Skip to main content
Log in

Inhibition of the Combustion and Detonation of Hydrogen-Air Mixtures behind the Shock Front

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The chain avalanche plays the determining role in all regimes of combustion in the hydrogen-oxygen system in the initiating shock wave near atmospheric pressure in a wide range of high initial temperatures. The characteristics of combustion and detonation can be effectively controlled by varying the rates of the competing chain-branching and chain-termination reactions with the use of small amounts of admixtures. The reactivity of the combustible mixture is correlated with the chemical structure of the admixture. This correlation is manifested in the fact that changing a single functional group in the admixture molecule produces a strong effect on the kinetics, macrokinetics, and gas dynamics of the overall process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Semenov, N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (Some Problems of Chemical Kinetics and Reactivity), Moscow: Akad. Nauk SSSR, 1958.

    Google Scholar 

  2. Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

    Google Scholar 

  3. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Sovetskaya Entsiklopediya, 1984, vol. 1, p. 594.

  4. Lewis, B. and von Elbe, G., Combustion, Flames, and Explosions of Gases, New York: Academic, 1961.

    Google Scholar 

  5. Lewis, B., and von Elbe, G., Combustion, Flames, and Explosions of Gases, Orlando: Academic, 1987, 2nd ed.

    Google Scholar 

  6. Schwenz, R.W., Gilbert, J.V., and Coombe, R.D., Chem. Phys. Lett., 1993, vol. 207, p. 5 26.

    Article  CAS  Google Scholar 

  7. Korzhavin, A.A., Bunev, V.A., Babkin, V.S., et al., in Science to Applications, Moscow: ENAS, 1999, p. 255.

    Google Scholar 

  8. Longning, H.E., Combust. Flame, 1997, vol. 108, no.4, p. 401.

    Google Scholar 

  9. Zel'dovich, Ya.B., Barenblatt, G.B., Makhviladze, G.M., and Librovich, V.N., Matematicheskaya teoriya goreniya (Mathematical Theory of Combustion), Moscow: Nauka, 1981.

    Google Scholar 

  10. Fizicheskaya entsiklopediya (Encyclopedia of Physics), Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1, p. 267.

  11. Semiokhin, I.A., Strakhov, B.V., and Ostov, A.I., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  12. Denisov, E.T., Sarkisov, O.M., and Likhtenshtein, G.I., Khimicheskaya kinetika (Chemical Kinetics), Moscow: Khimiya, 2000.

    Google Scholar 

  13. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Rossiiskaya Entsiklopediya, 1998, vol. 5, p. 345.

  14. Maas, U. and Warnatz, J., Combust. Flame, 1988, vol. 74, no.1, p. 53, 102.

    Article  Google Scholar 

  15. Gontkovskaya, V.T., Gordopolova, I.S., and Ozerkovskaya, N.I., Fiz. Goreniya Vzryva, 1988, vol. 24, no.1, p. 53.

    CAS  Google Scholar 

  16. Warnatz, J., Maas, U., and Dibble, R., Combustion: Physical and Chemical Fundamentals. Modelimg and Simulation. Experiments. Pollutant Formation, Berlin: Springer, 1996.

    Google Scholar 

  17. Frolov, S.M., Basevich, V.Ya., and Belyaev, A.A., Khim. Fiz., 1999, vol. 18, no.9, p. 54.

    CAS  Google Scholar 

  18. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Rossiiskaya. Entsiklopediya, 1984, vol. 1, p. 326.

  19. Novozhilov, B.V., Khim. Fiz., 1995, vol. 14, p. 35.

    CAS  Google Scholar 

  20. Azatyan, V.V., Kinet. Katal., 1977, vol. 18, no.2, p. 272.

    Google Scholar 

  21. Azatyan, V.V., Kinet. Katal., 1996, vol. 37, no.4, p. 512.

    Google Scholar 

  22. Azatyan, V.V., Kinet. Katal., 1999, vol. 40, no.6, p. 812.

    Google Scholar 

  23. Azatyan, V.V. and Shavard, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, p. 2460.

  24. Azatyan, V.V. and Merzhanov, A.G., in Khimicheskaya fizika na poroge XXI veka (Chemical Physics at the Turn of the 21st Century), Moscow: Nauka, 1996, p. 74.

    Google Scholar 

  25. Azatyan, V.V., Shebeko, Yu.N., Nabvtsenya, V.Yu., et al., Proc. Third Asia-Oceania Symp., Singapore, 1998, p. 131.

  26. Azatyan, V.V., Vedeshkin, G.K., Iskra, V.A., and Aivazyan, R.G., Proc. 12th World Hydrogen Energy Conf., Buenos Aires, 1998, p. 1965.

  27. Azatyan, V.V., Vagner, G.G., and Vedeshkin, G.K., Zh. Fiz. Khim., 2004, vol. 78, p. 1044.

    Google Scholar 

  28. Azatyan, V.V., Baklanov, D.I., Gvozdeva, L.G., et al., Dokl. Akad. Nauk, 2001, vol. 378, no.1, p. 55.

    Google Scholar 

  29. Pozharo-vzryvobezopasnost' veshchestv i materialov i sredstva pozharotusheniya. Spravochnik (Fire and Explosion Safety of Substances and Materials and Fire-Extinguishing Means: A Handbook), Korol'chenko, A.Ya. and Baratov, A.N., Eds., Moscow: Khimiya, 1990, vol. 1.

    Google Scholar 

  30. Tzang, W., Ind. Eng. Chem., 1992, vol. 31, p. 3.

    Google Scholar 

  31. Peters, N. and Rogg, B., Reduced Kinetic Mechanisms for Applications in Combustion Systems, Heidelberg: Springer, 1993.

    Google Scholar 

  32. German, T.C. and Muller, W.H., J. Phys. Chem., 1997, vol. 101, p. 6358.

    Google Scholar 

  33. Baulch, D.L., Cobos, C.J., Cox, R.A., et al., Combust. Flame, 1994, vol. 98, no.1, p. 59.

    Article  CAS  Google Scholar 

  34. Oganesyan, K.T. and Nalbandyan, A.B., Izv. Akad. Nauk Arm. SSR, 1965, vol. 18, no.2, p. 237.

    CAS  Google Scholar 

  35. Combustion Chemistry, Gardiner, W., Ed., New York: Springer, 1984.

    Google Scholar 

  36. Fish, A., Proc. Int. Oxidation Symp., Stanford: Stanford Res. Inst., 1967, vol. 1, p. 431.

    Google Scholar 

  37. Lordkipanidze, D.N., Azatyan, V.V., Dzotsenidze, Z.G., and Museridze, M.D., Fiz. Goreniya Vzryva, 1979, vol. 15, no.1, p. 73.

    CAS  Google Scholar 

  38. Denisov, E.T. and Azatyan, V.V., Inhibition of Chain Reactions, London: Gordon & Breach, 2000.

    Google Scholar 

  39. Azatyan, V.V., Gaganidze, K.I., Kolesnikov, S.A., and Trubnikov, G.R., Kinet. Katal., 1982, vol. 22, no.1, p. 244.

    Google Scholar 

  40. Azatyan, V.V., Kalachev, V.I., and Masalova, V.V., Zh. Fiz. Khim., 2003, vol. 77, pp. 1432.

    CAS  Google Scholar 

  41. Gel'fand, B.E., Fiz. Goreniya Vzryva, 2002, vol. 38, no.5, p. 101.

    Google Scholar 

  42. Azatyan, V.V., Merzhanov, A.G., Kalachev, V.I., et al., Fiz. Goreniya Vzryva, 2005, vol. 41, no.1, p. 3.

    CAS  Google Scholar 

  43. Sokolik, A.S., Samovosplamenenie, plamya i detonatsiya v gazakh (Spontaneous Ignition, Flame, and Detonation in Gases), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  44. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Sovetskaya Entsiklopediya, 1984, vol. 1, p. 326.

  45. Semenov, N.N., Razvitie teorii tsepnykh reaktsii i teplovogo vzryva (Development of the Theory of Chain Reactions and Thermal Explosion), Moscow: Mysl, 1969.

    Google Scholar 

  46. Denisov, E.T., Kinetika gomogennykh khimicheskikh reaktsii (Kinetics of Homogeneous Chemical Reactions), Moscow: Vysshaya Shkola, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kinetika i Kataliz, Vol. 46, No. 6, 2005, pp. 835–846.

Original Russian Text Copyright © 2005 by Azatyan, Pavlov, Shatalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azatyan, V.V., Pavlov, V.A. & Shatalov, O.P. Inhibition of the Combustion and Detonation of Hydrogen-Air Mixtures behind the Shock Front. Kinet Catal 46, 789–799 (2005). https://doi.org/10.1007/s10975-005-0137-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10975-005-0137-1

Keywords

Navigation