Skip to main content
Log in

Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Dihydropyridine (DHPR) and ryanodine receptors (RyRs) are central to transduction of transverse (T) tubular membrane depolarisation initiated by surface action potentials into release of sarcoplasmic reticular (SR) Ca2+ in skeletal muscle excitation–contraction coupling. Electronmicroscopic methods demonstrate an orderly positioning of such tubular DHPRs relative to RyRs in the SR at triad junctions where their membranes come into close proximity. Biochemical and genetic studies associated expression of specific, DHPR and RyR, isoforms with the particular excitation–contraction coupling processes and related elementary Ca2+ release events found respectively in skeletal and cardiac muscle. Physiological studies of intramembrane charge movements potentially related to voltage triggering of Ca2+ release demonstrated a particular qγ charging species identifiable with DHPRs through its T-tubular localization, pharmacological properties, and steep voltage-dependence paralleling Ca2+ release. Its nonlinear kinetics implicated highly co-operative conformational events in its transitions in response to voltage change. The effects of DHPR and RyR agonists and antagonists upon this intramembrane charge in turn implicated reciprocal rather than merely unidirectional DHPR–RyR interactions in these complex reactions. Thus, following membrane potential depolarization, an orthograde qγ-DHPR–RyR signaling likely initiates conformational alterations in the RyR with which it makes contact. The latter changes could then retrogradely promote further qγ-DHPR transitions through reciprocal co-operative allosteric interactions between receptors. These would relieve the resting constraints on both further, delayed, nonlinear qγ-DHPR charge transfers and on RyR-mediated Ca2+ release. They would also explain the more rapid charging and recovery qγ transients following larger depolarizations and membrane potential repolarization to the resting level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams BA, Beam KG (1990) Muscular dysgenesis in mice: a model system for studying excitation–contraction coupling. FASEB J 4:2809–2816

    PubMed  CAS  Google Scholar 

  • Adams BA, Tanabe T, Mikami A, Numa S, Beam KG (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346:569–572

    Article  PubMed  CAS  Google Scholar 

  • Adrian RH (1983) Electrical properties of striated muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology. Skeletal muscle, sect 10, chap 10. American Physiological Society, Bethesda, p 275–300

  • Adrian RH, Almers W (1976a) The voltage dependence of membrane capacity. J Physiol 254:317–338

    PubMed  CAS  Google Scholar 

  • Adrian RH, Almers W (1976b) Charge movement in the membrane of striated muscle. J Physiol 254:339–360

    PubMed  CAS  Google Scholar 

  • Adrian RH, Huang CL-H (1984a) Charge movements near the mechanical threshold in skeletal muscle of Rana temporaria. J Physiol 349:483–500

    PubMed  CAS  Google Scholar 

  • Adrian RH, Huang CL-H (1984b) Experimental analysis of the relationship between charge movement components in skeletal muscle of Rana temporaria. J Physiol 353:419–434

    PubMed  CAS  Google Scholar 

  • Adrian RH, Marshall MW (1977) Sodium currents in mammalian muscle. J Physiol 268:223–250

    PubMed  CAS  Google Scholar 

  • Adrian RH, Peachey LD (1973) Reconstruction of the action potential of frog sartorius muscle. J Physiol 235:103–131

    PubMed  CAS  Google Scholar 

  • Adrian RH, Peres A (1979) Charge movement and membrane capacity in frog skeletal muscle. J Physiol 289:83–97

    PubMed  CAS  Google Scholar 

  • Adrian RH, Chandler WK, Hodgkin AL (1969) The kinetics of mechanical activation in frog muscle. J Physiol 204:207–230

    PubMed  CAS  Google Scholar 

  • Airey JA, Beck CF, Murakami K, Tanksley SJ, Deerinck TJ, Ellisman MH, Sutko JL (1990) Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem 265:14187–14194

    PubMed  CAS  Google Scholar 

  • Airey JA, Grinsell MM, Jones LR, Sutko JL, Witcher D (1993) Three ryanodine receptor isoforms exist in avian striated muscles. Biochemistry 32:5739–5745

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104:296–305

    Article  PubMed  CAS  Google Scholar 

  • Almers W, Best PM (1976) Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J Physiol 262:583–611

    PubMed  CAS  Google Scholar 

  • Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol 312:159–176

    PubMed  CAS  Google Scholar 

  • Andronache Z, Hamilton SL, Dirksen RT, Melzer W (2009) A retrograde signal from RyR1 alters DHP receptor inactivation and limits window Ca2+ release in muscle fibers of Y522S RyR1 knock-in mice. Proc Natl Acad Sci USA 106:4531–4536

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552

    Article  PubMed  CAS  Google Scholar 

  • Avila G, Dirksen RT (2000) Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J Gen Physiol 115:467–480

    Article  PubMed  CAS  Google Scholar 

  • Bannister, RA (2007) Bridging the myoplasmic gap: recent developments in skeletal muscle excitation-contraction coupling. J Muscle Res Cell Motil 28:275–283

    Google Scholar 

  • Bannister RA, Beam KG (2005) The alpha1S N-terminus is not essential for bi-directional coupling with RyR1. Biochem Biophys Res Commun 336:134–141

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Beam KG (2009a) Ryanodine modification of RyR1 retrogradely affects L-type Ca2+ channel gating in skeletal muscle. J Muscle Res Cell Motil 30:217–223

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Beam KG (2009b) The cardiac α(1C) subunit can support excitation-triggered Ca2+ entry in dysgenic and dyspedic myotubes. Channels 3:268–273

    PubMed  Google Scholar 

  • Bannister RA, Colecraft HM, Beam KG (2008a) Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels. Biophys J 94:2631–2638

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Grabner M, Beam KG (2008b) The alpha(1S) III-IV loop influences 1,4-dihydropyridine receptor gating but is not directly involved in excitation–contraction coupling interactions with the type 1 ryanodine receptor. J Biol Chem 283:23217–23223

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Papadopoulos S, Haarmann CS, Beam KG (2009a) Effects of inserting fluorescent proteins into the alpha1S II–III loop: insights into excitation–contraction coupling. J Gen Physiol 134:35–51

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Pessah IN, Beam KG (2009b) The skeletal L-type Ca2+ current is a major contributor to excitation-coupled Ca2+ entry. J Gen Physiol 133:79–91

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Estève E, Eltit JM, Pessah IN, Allen PD, López JR, Beam KG (2010) A malignant hyperthermia-inducing mutation in RYR1 (R163C): consequent alterations in the functional properties of DHPR channels. J Gen Physiol 135:629–640

    Article  PubMed  CAS  Google Scholar 

  • Baylor SM (2005) Calcium sparks in skeletal muscle fibers. Cell Calcium 37:513–530

    Article  PubMed  CAS  Google Scholar 

  • Beam KG, Knudson CM, Powell JA (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320:168–170

    Article  PubMed  CAS  Google Scholar 

  • Bean BP, Rios E (1989) Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J Gen Physiol 94:65–93

    Article  PubMed  CAS  Google Scholar 

  • Beard NA, Wei L, Dulhunty AF (2009) Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. Eur Biophys J 39:27–36

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasová E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523

    Article  PubMed  CAS  Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11:425–430

    Article  PubMed  CAS  Google Scholar 

  • Caputo C (1976) The effect of caffeine and tetracaine on the time course of potassium contractures of single muscle fibres. J Physiol 255:191–207

    PubMed  CAS  Google Scholar 

  • Caputo C, Bolaños P (1987) Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine. J Gen Physiol 89:421–442

    Article  PubMed  CAS  Google Scholar 

  • Caswell AH, Lau YH, Garcia M, Brunschwig JP (1979) Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J Biol Chem 254:202–208

    PubMed  CAS  Google Scholar 

  • Catterall WA (1991) Structure and function of voltage-gated sodium and calcium channels. Curr Opin Neurobiol 1:5–13

    Article  PubMed  CAS  Google Scholar 

  • Chandler WK, Hollingworth S, Baylor SM (2003) Simulation of calcium sparks in cut skeletal muscle fibers of the frog. J Gen Physiol 121:311–324

    Article  PubMed  CAS  Google Scholar 

  • Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722

    Article  PubMed  CAS  Google Scholar 

  • Chawla S, Huang CL-H (2004) FPL-64176 alters both charge movement and Ca2+ release properties in amphibian muscle fibres. Pflugers Arch 447:922–927

    Article  PubMed  CAS  Google Scholar 

  • Chawla S, Skepper JN, Hockaday AR, Huang CL-H (2001) Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres. J Physiol 536:351–359

    Article  PubMed  CAS  Google Scholar 

  • Chawla S, Skepper JN, Huang CL-H (2002) Differential effects of sarcoplasmic reticular Ca2+-ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres. J Physiol 539:869–882

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  • Cherednichenko G, Hurne AM, Fessenden JD, Lee EH, Allen PD, Beam KG, Pessah IN (2004) Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc Natl Acad Sci USA 101:15793–15798

    Article  PubMed  CAS  Google Scholar 

  • Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18:323–422

    Article  PubMed  CAS  Google Scholar 

  • Costantin LL (1975) Contractile activation in striated muscle. Prog Biophys Mol Biol 29:197–224

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Kovács L, Szücs G (1987) Perchlorate and the relationship between charge movement and contractile activation in frog skeletal muscle fibres. J Physiol 390:213–227

    PubMed  CAS  Google Scholar 

  • Csernoch L, Huang CL-H, Szucs G, Kovacs L (1988) Differential effects of tetracaine on charge movements and Ca2+ signals in frog skeletal muscle. J Gen Physiol 92:601–612

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Pizarro G, Uribe I, Rodríguez M, Ríos E (1991) Interfering with calcium release suppresses Iγ, the “hump” component of intramembranous charge movement in skeletal muscle. J Gen Physiol 97:845–884

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Szentesi P, Kovács L (1999a) Differential effects of caffeine and perchlorate on excitation–contraction coupling in mammalian skeletal muscle. J Physiol 520:217–230

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Szentesi P, Sárközi S, Szegedi C, Jona I, Kovács L (1999b) Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres. J Physiol 515:843–857

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Zhou J, Stern MD, Brum G, Ríos E (2004) The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle. J Physiol 557:43–58

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Pouvreau S, Ronjat M, Jacquemond V (2008) Voltage-activated elementary calcium release events in isolated mouse skeletal muscle fibers. J Membr Biol 226:43–55

    Article  PubMed  CAS  Google Scholar 

  • Dilger JP, McLaughlin SG, McIntosh TJ, Simon SA (1979) The dielectric constant of phospholipid bilayers and the permeability of membranes to ions. Science 206:1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Dirksen RT (2002) Bi-directional coupling between dihydropyridine receptors and ryanodine receptors. Front Biosci 7:d659–d670

    Article  PubMed  CAS  Google Scholar 

  • Duane S, Huang CL-H (1982) A quantitative description of the voltage-dependent capacitance in frog skeletal muscle in terms of equilibrium statistical mechanics. Proc R Soc Lond B 215:75–94

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Zhu PH, Patterson MF, Ahern G (1992) Actions of perchlorate ions on rat soleus muscle fibres. J Physiol 448:99–119

    PubMed  CAS  Google Scholar 

  • Eltit JM, Szpyt J, Li H, Allen PD, Perez CF (2011) Reduced gain of excitation–contraction coupling in triadin-null myotubes is mediated by the disruption of FKBP12/RyR1 interaction. Cell Calcium 49:128–135

    Article  PubMed  CAS  Google Scholar 

  • Endo M (1981) Mechanism of calcium-induced calcium release in the SR membrane. In: Ohnishi ST, Endo M (eds) The mechanism of gated calcium transport across biological membranes. Academic Press, New York, pp 257–264

    Google Scholar 

  • Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89:1153–1176

    Article  PubMed  CAS  Google Scholar 

  • Estève E, Eltit JM, Bannister RA, Liu K, Pessah IN, Beam KG, Allen PD, López JR (2010) A malignant hyperthermia-inducing mutation in RYR1 (R163C): alterations in Ca2+ entry, release, and retrograde signaling to the DHPR. J Gen Physiol 135:619–628

    Article  PubMed  CAS  Google Scholar 

  • Etter EF (1990) The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle. J Physiol 421:441–462

    PubMed  CAS  Google Scholar 

  • Falk G, Fatt P (1964) Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc R Soc Lond B 160:69–123

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Yuan Y, Palade P (2001) FPL-64176 modifies pore properties of L-type Ca2+ channels. Am J Physiol Cell Physiol 280:C565–C572

    PubMed  CAS  Google Scholar 

  • Felder E, Franzini-Armstrong C (2002) Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci USA 99:1695–1700

    Article  PubMed  CAS  Google Scholar 

  • Feldmeyer D, Luttgau HC (1988) The effect of perchlorate on Ca currents and mechanical force in skeletal muscle fibres. Pflügers Archiv 411:R190 (abstract)

    Google Scholar 

  • Ferguson DG, Schwartz HW, Franzini-Armstrong C (1984) Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary shadowing study. J Cell Biol 99:1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Field AC, Hill C, Lamb GD (1988) Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. J Physiol 406:277–297

    PubMed  CAS  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  • Francini F, Bencini C, Piperio C, Squecco R (2001) Separation of charge movement components in mammalian skeletal muscle fibres. J Physiol 537:45–56

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C (2004) Functional implications of RyR–DHPR relationships in skeletal and cardiac muscles. Biol Res 37:507–512

    Article  PubMed  Google Scholar 

  • Franzini-Armstrong C, Nunzi G (1983) Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil 4:233–252

    Article  PubMed  CAS  Google Scholar 

  • Fraser JA, Skepper JN, Hockaday AR, Huang CL-H (1998) The tubular vacuolation process in amphibian skeletal muscle. J Muscle Res Cell Motil 19:613–629

    Article  PubMed  CAS  Google Scholar 

  • Fraser JA, Huang CL-H, Pedersen TH (2011) Relationships between resting conductances, excitability and t-system ionic homeostasis in skeletal muscle. J Gen Physiol 138:95–116

    Article  PubMed  Google Scholar 

  • Fryer MW, Neering IR (1989) Actions of caffeine on fast- and slow-twitch muscles of the rat. J Physiol 416:435–454

    PubMed  CAS  Google Scholar 

  • Fryer MW, Lamb GD, Neering IR (1989) The action of ryanodine on rat fast and slow intact skeletal muscles. J Physiol 414:399–413

    PubMed  CAS  Google Scholar 

  • Gach MP, Cherednichenko G, Haarmann C, Lopez JR, Beam KG, Pessah IN, Franzini-Armstrong C, Allen PD (2008) α2δ1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. Biophys J 94:3023–3034

    Article  PubMed  CAS  Google Scholar 

  • Gallant EM, Lentz LR, Taylor SR (1995) Modulation of caffeine contractures in mammalian skeletal muscle by variation of extracellular potassium. J Cell Physiol 165:254–260

    Article  PubMed  CAS  Google Scholar 

  • García J, Pizarro G, Ríos E, Stefani E (1991) Effect of the calcium buffer EGTA on the “hump” component of charge movement in skeletal muscle. J Gen Physiol 97:885–896

    Article  PubMed  Google Scholar 

  • García J, McKinley K, Appel SH, Stefani E (1992) Ca2+ current and charge movement in adult single human skeletal muscle fibres. J Physiol 454:183–196

    PubMed  Google Scholar 

  • Gilliam LA, Moylan JS, Ann Callahan L, Sumandea MP, Reid MB (2011) Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve 43:94–102

    Article  PubMed  CAS  Google Scholar 

  • Gomolla M, Gottschalk G, Lüttgau HC (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J Physiol 343:197–214

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Rios E (1993) Perchlorate enhances transmission in skeletal muscle excitation–contraction coupling. J Gen Physiol 102:373–421

    Article  PubMed  CAS  Google Scholar 

  • Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT (2007) Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J Gen Physiol 130:365–378

    Article  PubMed  CAS  Google Scholar 

  • Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II–III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919

    Article  PubMed  CAS  Google Scholar 

  • Györke I, Györke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810

    Article  PubMed  Google Scholar 

  • Györke S, Palade P (1992) Effects of perchlorate on excitation–contraction coupling in frog and crayfish skeletal muscle. J Physiol 456:443–451

    PubMed  Google Scholar 

  • Hadley RW, Lederer WJ (1989) Intramembrane charge movement in guinea-pig and rat ventricular myocytes. J Physiol 415:601–624

    PubMed  CAS  Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

    PubMed  CAS  Google Scholar 

  • Hollingworth S, Marshall MW (1981) A comparative study of charge movement in rat and frog skeletal muscle fibres. J Physiol 321:583–602

    PubMed  CAS  Google Scholar 

  • Hollingworth S, Peet J, Chandler WK, Baylor SM (2001) Calcium sparks in intact skeletal muscle fibers of the frog. J Gen Physiol 118:653–678

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth S, Chandler WK, Baylor SM (2006) Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers. J Gen Physiol 127:291–307

    Article  PubMed  CAS  Google Scholar 

  • Holmberg SRM, Williams AJ (1990) Patterns of interaction between anthraquinone drugs and the calcium-release channel from sarcoplasmic reticulum. Circ Res 67:272–283

    PubMed  CAS  Google Scholar 

  • Horowicz P, Schneider MF (1981) Membrane charge moved at contraction thresholds in skeletal muscle fibres. J Physiol 314:595–633

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1981a) Dielectric components of charge movements in skeletal muscle. J Physiol 313:187–205

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1981b) Membrane capacitance in hyperpolarized muscle fibres. J Physiol 313:207–222

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1982) Pharmacological separation of charge movement components in frog skeletal muscle. J Physiol 324:375–387

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1983a) Experimental analysis of alternative models of charge movement in frog skeletal muscle. J Physiol 336:527–543

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1983b) Time domain spectroscopy of the non-linear capacitance in frog skeletal muscle. J Physiol 341:1–24

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1984) Analysis of “off” tails of intramembrane charge movements in skeletal muscle of Rana temporaria. J Physiol 356:375–390

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1986) The differential effects of twitch potentiators on charge movements in frog skeletal muscle. J Physiol 380:17–33

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1987) “Off” tails of intramembrane charge movements in frog skeletal muscle in perchlorate-containing solutions. J Physiol 384:491–509

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1988) Initial charge distribution and capacity transients in frog skeletal muscle. Pflugers Arch Eur J Physiol 412:445–447

    Article  CAS  Google Scholar 

  • Huang CL-H (1990) Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. J Gen Physiol 96:535–557

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (1991) Separation of intramembrane charging components in low-calcium solutions in frog skeletal muscle. J Gen Physiol 98:249–263

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (1993) Charge inactivation in the membrane of intact frog striated muscle fibers. J Physiol 468:107–124

    Google Scholar 

  • Huang CL-H (1994a) Charge conservation in intact frog skeletal muscle fibres in gluconate-containing solutions. J Physiol 474:161–171

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1994b) Kinetic separation of charge movement components in intact frog skeletal muscle. J Physiol 481:357–369

    PubMed  CAS  Google Scholar 

  • Huang CL-H (1996) Kinetic isoforms of intramembrane charge in intact amphibian striated muscle. J Gen Physiol 107:515–534

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (1997) Dual actions of tetracaine on intramembrane charge in amphibian striated muscle. J Physiol 501:589–606

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (1998a) The influence of perchlorate ions on complex charging transients in amphibian striated muscle. J Physiol 506:699–714

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (1998b) The influence of caffeine on intramembrane charge movements in intact frog striated muscle. J Physiol 512:707–721

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H (2001) Charge movements in intact amphibian skeletal muscle fibres in the presence of cardiac glycosides. J Physiol 532:509–523

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H, Peachey LD (1989) The anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibres. J Gen Physiol 93:565–584

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H, Peachey LD (1992) A reconstruction of charge movement during the action potential in frog skeletal muscle. Biophys J 61:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H, Sun L, Fraser JA, Grace AA, Zaidi M (2007) Similarities and contrasts in ryanodine receptor localization and function in osteoclasts and striated muscle cells. Ann NY Acad Sci 1116:255–270

    Article  PubMed  CAS  Google Scholar 

  • Hui CS (1983a) Pharmacological studies of charge movement in frog skeletal muscle. J Physiol 337:509–529

    PubMed  CAS  Google Scholar 

  • Hui CS (1983b) Differential properties of two charge components in frog skeletal muscle. J Physiol 337:531–552

    PubMed  CAS  Google Scholar 

  • Hui CS (2005) Association of the Iγ and Iδ charge movement with calcium release in frog skeletal muscle. Biophys J 88(2):1030–1045

    Article  PubMed  CAS  Google Scholar 

  • Hui CS, Chandler WK (1991) Qβ and Qγ components of intramembranous charge movement in frog cut twitch fibers. J Gen Physiol 98:429–464

    Article  PubMed  CAS  Google Scholar 

  • Hui CS, Chen W (1992) Separation of Qβ and Qγ charge components in frog cut twitch fibers with tetracaine. Critical comparison with other methods. J Gen Physiol 99:985–1016

    Article  PubMed  CAS  Google Scholar 

  • Hui CS, Milton RL, Eisenberg RS (1984) Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Proc Natl Acad Sci USA 81:2582–2585

    Article  PubMed  CAS  Google Scholar 

  • Hurne AM, O’Brien JJ, Wingrove D, Cherednichenko G, Allen PD, Beam KG, Pessah IN (2005) Ryanodine receptor type 1 (RyR1) mutations C4958S and C4961S reveal excitation-coupled calcium entry (ECCE) is independent of sarcoplasmic reticulum store depletion. J Biol Chem 280:36994–37004

    Article  PubMed  CAS  Google Scholar 

  • Jacquemond V, Schneider MF (1992) Low myoplasmic Mg2+ potentiates calcium release during depolarization of frog skeletal muscle fibers. J Gen Physiol 100:137–154

    Article  PubMed  CAS  Google Scholar 

  • Jong DS, Pape PC, Chandler WK (1995) Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers. J Gen Physiol 106:659–704

    Article  PubMed  CAS  Google Scholar 

  • Kashiyama T, Murayama T, Suzuki E, Allen PD, Ogawa Y (2010) Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2+ signals in a myogenic cell line. PLoS One 5:e11526

    Article  PubMed  CAS  Google Scholar 

  • Klein MG, Schneider MF (2006) Ca2+ sparks in skeletal muscle. Prog Biophys Mol Biol 92:308–332

    Article  PubMed  CAS  Google Scholar 

  • Klein MG, Simon BJ, Schneider MF (1990) Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J Physiol 425:599–626

    PubMed  CAS  Google Scholar 

  • Klein MG, Cheng H, Santana LF, Jiang Y, Lederer WJ, Schneider MF (1996) Quantized calcium release events activated by dual mechanisms in skeletal muscle. Nature 379:455–458

    Article  PubMed  CAS  Google Scholar 

  • Klein MG, Lacampagne A, Schneider MF (1997) Voltage dependence of the pattern and frequency of discrete Ca2+ release events after brief repriming in frog skeletal muscle. Proc Natl Acad Sci USA 94:11061–11066

    Article  PubMed  CAS  Google Scholar 

  • Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the α1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264:1345–1348

    PubMed  CAS  Google Scholar 

  • Koutsis G, Philippides A, Huang CL-H (1995) The afterdepolarization in Rana temporaria muscle fibres following osmotic shock. J Muscle Res Cell Motil 16:519–528

    Article  PubMed  CAS  Google Scholar 

  • Kovacs L, Szucs G (1983) Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog. J Physiol 341:559–578

    PubMed  CAS  Google Scholar 

  • Lacampagne A, Klein MG, Ward CW, Schneider MF (2000) Two mechanisms for termination of Ca2+ sparks in skeletal muscle. Proc Natl Acad Sci USA 97:7823–7828

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD (1986a) Asymmetric charge movement in contracting muscle fibres in the rabbit. J Physiol 376:63–83

    PubMed  CAS  Google Scholar 

  • Lamb GD (1986b) Components of charge movement in rabbit skeletal muscle: the effect of tetracaine and nifedipine. J Physiol 376:85–100

    PubMed  CAS  Google Scholar 

  • Lamb GD (1992) DHP receptors and excitation–contraction coupling. J Muscle Res Cell Motil 13:394–405

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD (2000) Excitation–contraction coupling in skeletal muscle: comparisons with cardiac muscle. Clin Exp Pharmacol Physiol 27:216–224

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD, Stephenson DG (1991) Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol 434:507–528

    PubMed  CAS  Google Scholar 

  • Lamb GD, Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation contraction coupling in skeletal muscle fibres of the rat. J Physiol 478:331–339

    PubMed  CAS  Google Scholar 

  • Lamb GD, Walsh T (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J Physiol 393:595–617

    PubMed  CAS  Google Scholar 

  • Lamb GD, Stephenson DG, Stienen GJ (1993) Effects of osmolality and ionic strength on the mechanism of Ca2+ release in skinned skeletal muscle fibres of the toad. J Physiol 464:629–648

    PubMed  CAS  Google Scholar 

  • Lamb GD, Cellini MA, Stephenson DG (2001) Different Ca2+ releasing action of caffeine and depolarisation in skeletal muscle fibres of the rat. J Physiol 531:715–728

    Article  PubMed  CAS  Google Scholar 

  • Laver DR (2005) Coupled calcium release channels and their regulation by luminal and cytosolic ions. Eur Biophys J 34:359–368

    Article  PubMed  CAS  Google Scholar 

  • Laver DR, Honen BN (2008) Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel. J Gen Physiol 132:429–446

    Article  PubMed  CAS  Google Scholar 

  • Laver DR, Baynes TM, Dulhunty AF (1997) Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol 156:213–229

    Article  PubMed  CAS  Google Scholar 

  • Laver DR, O’Neill ER, Lamb GD (2004) Luminal Ca2+-regulated Mg2+ inhibition of skeletal RyRs reconstituted as isolated channels or coupled clusters. J Gen Physiol 124:741–758

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Lopez JR, Li J, Protasi F, Pessah IN, Kim DH, Allen PD (2004) Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module. Am J Physiol Cell Physiol 286:C179–C189

    Article  PubMed  CAS  Google Scholar 

  • Leuranguer V, Papadopoulos S, Beam KG (2006) Organization of calcium channel beta1a subunits in triad junctions in skeletal muscle. J Biol Chem 281:3521–3527

    Article  PubMed  CAS  Google Scholar 

  • Lew WY, Hryshko LV, Bers DM (1991) Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes. Circ Res 69:1139–1145

    PubMed  CAS  Google Scholar 

  • Lorenzon NM, Beam KG (2007) Accessibility of targeted DHPR sites to streptavidin and functional effects of binding on EC coupling. J Gen Physiol 130:379–388

    Article  PubMed  CAS  Google Scholar 

  • Luttgau HC, Oetliker H (1968) The action of caffeine on activation of the contractile mechanism in striated muscle fibres. J Physiol 194:51–74

    PubMed  CAS  Google Scholar 

  • Lüttgau HC, Gottschalk G, Kovács L, Fuxreiter M (1983) How perchlorate improves excitation–contraction coupling in skeletal muscle fibers. Biophys J 43:247–249

    Article  PubMed  Google Scholar 

  • Ma J, Mundiña-Weilenmann C, Hosey MM, Ríos E (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. Biophys J 60:890–901

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Anderson K, Shirokov R, Levis R, González A, Karhanek M, Hosey MM, Meissner G, Ríos E (1993) Effects of perchlorate on the molecules of excitation–contraction coupling of skeletal and cardiac muscle. J Gen Physiol 102:423–448

    Article  PubMed  CAS  Google Scholar 

  • Martin CA, Petousi N, Chawla S, Hockaday AR, Burgess AJ, Fraser JA, Huang CL-H, Skepper JN (2003) The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle. J Muscle Res Cell Motil 24:407–415

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Ondrias K, Marks AR (1998) Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281:818–821

    Article  PubMed  CAS  Google Scholar 

  • Maylie J, Irving M, Sizto NL, Chandler WK (1987a) Calcium signals recorded from cut frog twitch fibers containing antipyrylazo III. J Gen Physiol 89:83–143

    Article  PubMed  CAS  Google Scholar 

  • Maylie J, Irving M, Sizto NL, Chandler WK (1987b) Comparison of arsenazo III optical signals in intact and cut frog twitch fibers. J Gen Physiol 89:41–81

    Article  PubMed  CAS  Google Scholar 

  • McCleskey EW (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle. J Physiol 361:231–249

    PubMed  CAS  Google Scholar 

  • McGarry SJ, Williams AJ (1993) Digoxin activates sarcoplasmic reticulum Ca2+ release channels: a possible role in cardiac inotropy. Br J Pharmacol 108:1043–1050

    PubMed  CAS  Google Scholar 

  • Mehta AR, Huang CL-H, Skepper JN, Fraser JA (2008) Extracellular charge adsorption influences intracellular electrochemical homeostasis in amphibian skeletal muscle. Biophys J 94:4549–4560

    Article  PubMed  CAS  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, Darling E, Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25:236–244

    Article  PubMed  CAS  Google Scholar 

  • Melzer W, Schneider MF, Simon BJ, Szucs G (1986) Intramembrane charge movement and calcium release in frog skeletal muscle. J Physiol 373:481–511

    PubMed  CAS  Google Scholar 

  • Mitchell RD, Palade P, Fleischer S (1983a) Purification of morphologically intact triad structures from skeletal muscle. J Cell Biol 96:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RD, Saito A, Palade P, Fleischer S (1983b) Morphology of isolated triads. J Cell Biol 96:1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Moonga BS, Li S, Iqbal J, Davidson R, Shankar VS, Bevis PJ, Inzerillo A, Abe E, Huang CL, Zaidi M (2002) Ca2+ influx through the osteoclastic plasma membrane ryanodine receptor. Am J Physiol Renal Physiol 282:F921–F932

    PubMed  CAS  Google Scholar 

  • Morgan KG, Bryant SH (1977) The mechanism of action of dantrolene sodium. J Pharmacol Exp Ther 201:138–147

    PubMed  CAS  Google Scholar 

  • Mouton J, Marty I, Villaz M, Feltz A, Maulet Y (2001) Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain. Biochem J 354:597–603

    Article  PubMed  CAS  Google Scholar 

  • Mundiña-Weilenmann C, Ma J, Ríos E, Hosey MM (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase. Biophys J 60:902–909

    Article  PubMed  Google Scholar 

  • Murayama T, Ogawa Y (1992) Purification and characterization of two ryanodine-binding protein isoforms from sarcoplasmic reticulum of bullfrog skeletal muscle. J Biochem 112:514–522

    PubMed  CAS  Google Scholar 

  • Murayama T, Ogawa Y (2002) Roles of two ryanodine receptor isoforms coexisting in skeletal muscle. Trends Cardiovasc Med 12:305–311

    Article  PubMed  CAS  Google Scholar 

  • Murayama T, Kurebayashi N, Ogawa Y (2000) Role of Mg2+ in Ca2+-induced Ca2+ release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys J 78:1810–1824

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Ogura T, Protasi F, Franzini-Armstrong C, Allen PD, Beam KG (1997) Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc Natl Acad Sci USA 94:1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Sekiguchi N, Rando TA, Allen PD, Beam KG (1998) Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem 273:13403–13406

    Article  PubMed  CAS  Google Scholar 

  • Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I (2009) Triadin deletion induces impaired skeletal muscle function. J Biol Chem 284:34918–34929

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y (1994) Role of ryanodine receptors. Crit Rev Biochem Mol Biol 29:229–274

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Murayama T, Kurebayashi N (2002) Ryanodine receptor isoforms of non-mammalian skeletal muscle. Front Biosci 7:d1184–d1194

    Article  PubMed  CAS  Google Scholar 

  • Olivares EB, Tanskley SJ, Airey JA, Beck CF, Ouyang Y, Deerinck TJ, Ellisman MJ, Sutko JL (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys J 59:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Palade P (1987) Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. 1. Use of pyrophosphate to study caffeine-induced Ca2+ release. J Biol Chem 262:6135–6141

    PubMed  CAS  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752

    Article  PubMed  CAS  Google Scholar 

  • Pape PC, Jong DS, Chandler WK (1995) Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 106:259–336

    Article  PubMed  CAS  Google Scholar 

  • Pedersen TH, Huang CL-H, Fraser JA (2011) An analysis of the relationships between sub-threshold electrical properties and excitability in skeletal muscle. J Gen Physiol 138:73–93

    Article  PubMed  Google Scholar 

  • Pizarro G, Csernoch L, Uribe I, Ríos E (1992) Differential effects of tetracaine on two kinetic components of calcium release in frog skeletal muscle fibres. J Physiol 457:525–538

    PubMed  CAS  Google Scholar 

  • Pouvreau S, Royer L, Yi JX, Brum G, Meissner G, Rios E, Zhou JS (2007) Ca2+ sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci USA 104:5235–5240

    Article  PubMed  CAS  Google Scholar 

  • Proenza C, O’Brien J, Nakai J, Mukherjee S, Allen PD, Beam KG (2002) Identification of a region of RyR1 that participates in allosteric coupling with the alpha(1S) (Ca(V)1.1) II–III loop. J Biol Chem 277:6530–6535

    Article  PubMed  CAS  Google Scholar 

  • Prosser BL, Wright NT, Hernãndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF (2008) S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation–contraction coupling. J Biol Chem 283:5046–5057

    Article  PubMed  CAS  Google Scholar 

  • Prosser BL, Hernández-Ochoa EO, Zimmer DB, Schneider MF (2009a) Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1−/− muscle fibres. J Physiol 587:4543–4559

    Article  PubMed  CAS  Google Scholar 

  • Prosser BL, Hernández-Ochoa EO, Zimmer DB, Schneider MF (2009b) The Qγ component of intra-membrane charge movement is present in mammalian muscle fibres, but suppressed in the absence of S100A1. J Physiol 587:4523–4541

    Article  PubMed  CAS  Google Scholar 

  • Protasi F (2002) Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells. Front Biosci 7:d650–d658

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle. Biophys J 83:3230–3244

    Article  PubMed  CAS  Google Scholar 

  • Rieger F, Bournaud R, Shimahara T, Garcia L, Pincon-Raymond M, Romey G, Lazdunskt M (1987) Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature 330:563–566

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature 325:717–720

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RL, Hess P, Reeves JP, Smilowitz H, Tsien RW (1986) Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. Science 231:1564–1566

    Article  PubMed  CAS  Google Scholar 

  • Rousseau E, Ladine J, Liu Q-Y, Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267:75–86

    Article  PubMed  CAS  Google Scholar 

  • Sagara Y, Inesi G (1991) Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506

    PubMed  CAS  Google Scholar 

  • Sárközi S, Szentesi P, Cseri J, Kovács L, Csernoch L (1996a) Concentration-dependent effects of tetracaine on excitation–contraction coupling in frog skeletal muscle fibres. J Muscle Res Cell Motil 17:647–656

    Article  PubMed  Google Scholar 

  • Sárközi S, Szentesi P, Jona I, Csernoch L (1996b) Effects of cardiac glycosides on excitation–contraction coupling in frog skeletal muscle fibres. J Physiol 495:611–626

    PubMed  Google Scholar 

  • Scheuer T, Gilly WF (1986) Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle. Proc Natl Acad Sci USA 83:8799–8803

    Article  PubMed  CAS  Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage-dependent charge in skeletal muscle: a possible step in excitation–contraction coupling. Nature 242:244–246

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LM, McCleskey EW, Almers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314:747–751

    Article  PubMed  CAS  Google Scholar 

  • Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

    PubMed  CAS  Google Scholar 

  • Shankar VS, Pazianas M, Huang CL, Simon B, Adebanjo OA, Zaidi M (1995) Caffeine modulates Ca2+ receptor activation in isolated rat osteoclasts and induces intracellular Ca2+ release. Am J Physiol 268:F447–F454

    PubMed  CAS  Google Scholar 

  • Sheikh SM, Skepper JN, Chawla S, Vandenberg JI, Elneil S, Huang CL-H (2001) Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres. J Physiol 535:579–590

    Article  PubMed  CAS  Google Scholar 

  • Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF (2006) Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions. Proc Natl Acad Sci USA 103:19760–19765

    Article  PubMed  CAS  Google Scholar 

  • Shirokova N, Rios E (1996) Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration. J Physiol 493:341–356

    PubMed  CAS  Google Scholar 

  • Shirokova N, González A, Ma J, Shirokov R, Ríos E (1995) Properties and roles of an intramembranous charge mobilized at high voltages in frog skeletal muscle. J Physiol 486:385–400

    PubMed  CAS  Google Scholar 

  • Simon BJ, Beam KG (1985) Slow charge movement in mammalian skeletal muscle. J Gen Physiol 85:1–19

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino V (ed) (1995) Molecular biology of ryanodine receptors. In: Ryanodine receptors. Boca Raton, FL, CRC, pp 85–100

  • Squecco R, Bencini C, Piperio C, Francini F (2004) L-type Ca2+ channel and ryanodine receptor cross-talk in frog skeletal muscle. J Physiol 555:137–152

    Article  PubMed  CAS  Google Scholar 

  • Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C (1995) Molecular architecture of membranes involved in excitation–contraction coupling of cardiac muscle. J Cell Biol 129:659–671

    Article  PubMed  CAS  Google Scholar 

  • Szentesi P, Collet C, Sárközi S, Szegedi C, Jona I, Jacquemond V, Kovács L, Csernoch L (2001) Effects of dantrolene on steps of excitation–contraction coupling in mammalian skeletal muscle fibers. J Gen Physiol 118:355–375

    Article  PubMed  CAS  Google Scholar 

  • Szücs G, Csernoch L, Magyar J, Kovács L (1991) Contraction threshold and the “hump” component of charge movement in frog skeletal muscle. J Gen Physiol 97:897–911

    Article  PubMed  Google Scholar 

  • Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE (2004) Differential contribution of skeletal and cardiac II–III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell 15:5408–5419

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H (1993) Primary structure and expression from cDNAs of the ryanodine receptor. Ann NY Acad Sci 707:165–177

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990a) Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 346:567–569

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Mikami A, Numa S, Beam KG (1990b) Cardiac-type excitation–contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344:451–453

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Adams BA, Numa S, Beam KG (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352:800–803

    Article  PubMed  CAS  Google Scholar 

  • Tinker A, Sutko JL, Ruest L, Deslongchamps P, Welch W, Airey JA, Gerzon K, Bidasee KR, Besch HR Jr, Williams AJ (1996) Electrophysiological effects of ryanodine derivatives on the sheep cardiac sarcoplasmic reticulum calcium-release channel. Biophys J 70:2110–2119

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison D, Bley K, Fox A (1995) Reflections on Ca2+-channel diversity, 1988–1994. Trends Neurosci 18:52–54

    Article  PubMed  CAS  Google Scholar 

  • Tsugorka A, Rios E, Blatter LA (1995) Imaging elementary events of calcium release in skeletal muscle cells. Science 269:1723–1726

    Article  PubMed  CAS  Google Scholar 

  • Usher-Smith JA, Skepper JN, Fraser JA, Huang CL-H (2006a) Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle. Pflugers Arch 452:231–239

    Article  PubMed  CAS  Google Scholar 

  • Usher-Smith JA, Xu W, Fraser JA, Huang CL-H (2006b) Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle. Pflugers Arch 453:211–221

    Article  PubMed  CAS  Google Scholar 

  • Usher-Smith JA, Fraser JA, Huang CL-H, Skepper JN (2007) Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle. J Muscle Res Cell Motil 28:19–28

    Article  PubMed  Google Scholar 

  • Varadi G, Lory P, Schultz D, Varadi M, Schwartz A (1991) Acceleration of activation and inactivation by the β-subunit of the skeletal muscle calcium channel. Nature 352:159–162

    Article  PubMed  CAS  Google Scholar 

  • Vergara J, Caputo C (1983) Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc Natl Acad Sci USA 80:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht T, Radermacher M (1997) Ryanodine receptors: structure and macromolecular interactions. Curr Opin Struct Biol 7:258–265

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, Bryant SH, Schwartz A (1986) Effect of calcium antagonist drugs on calcium currents in mammalian skeletal muscle fibers. J Pharmacol Exp Ther 236:403–407

    PubMed  CAS  Google Scholar 

  • Walsh KB, Bryant SH, Schwartz A (1987) Suppression of charge movement by calcium antagonists is not related to calcium channel block. Pflugers Arch 409:217–219

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, Bryant SH, Schwartz A (1988) Action of diltiazem on excitation–contraction coupling in bullfrog skeletal muscle fibers. J Pharmacol Exp Ther 245:531–536

    PubMed  CAS  Google Scholar 

  • Wei L, Gallant EM, Dulhunty AF, Beard NA (2009) Junctin and triadin activate skeletal ryanodine receptors; junctin alone mediates functional interactions with calsequestrin. Int J Biochem Cell Biol 41:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Weisleder N, Brotto M, Komazaki S, Pan Z, Zhao X, Nosek T, Parness J, Takeshima H, Ma J (2006) Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174:639–645

    Article  PubMed  CAS  Google Scholar 

  • Weisleder N, Ferrante C, Hirata Y, Collet C, Chu Y, Cheng H, Takeshima H, Ma J (2007) Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle. Cell Calcium 42:548–555

    Article  PubMed  CAS  Google Scholar 

  • Weiss RG, O’Connell KM, Flucher BE, Allen PD, Grabner M, Dirksen RT (2004) Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III–IV loop on skeletal muscle EC coupling. Am J Physiol Cell Physiol 287:C1094–C1102

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Allen DG (1992) Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibers from mouse skeletal muscle. J Physiol 453:413–434

    PubMed  CAS  Google Scholar 

  • Wilkens CM, Kasielke N, Flucher BE, Beam KG, Grabner M (2001) Excitation–contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720–L764 of the alpha 1S II–III loop. Proc Natl Acad Sci USA 98:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Woscholski R, Marme D (1992) Dihydropyridine binding of the calcium channel complex from skeletal muscle is modulated by subunit interaction. Cell Signal 4:209–218

    Article  PubMed  CAS  Google Scholar 

  • Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ (2008) S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem 283:26676–26683

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Meissner G (1998) Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophys J 75:2302–2312

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Jones R, Meissner G (1993) Effects of local anaesthetics on single channel behaviour of skeletal muscle calcium release channel. J Gen Physiol 101:207–233

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, Moonga BS, Huang CL (2004) Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biol Rev Camb Philos Soc 79:79–100

    Article  PubMed  Google Scholar 

  • Zhang Y, Fraser JA, Schwiening C, Zhang Y, Killeen MJ, Grace AA, Huang CL-H (2010) Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ stores. Acta Physiol 198:143–158

    Article  CAS  Google Scholar 

  • Zhou J, Brum G, Gonzalez A, Launikonis BS, Stern MD, Rios E (2003) Ca2+ sparks and embers of mammalian muscle. Properties of the sources. J Gen Physiol 122:95–114

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Yi J, Royer L, Launikonis BS, Gonzalez A, Garcıa J, Rıos E (2006) A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 290:C539–C553

    Article  PubMed  CAS  Google Scholar 

  • Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.L.-H. Huang acknowledges support from the British Medical Research Council, the Wellcome Trust, and the British Heart Foundation. T.H. Pedersen acknowledges the support of the Danish Medical Research Council. J.A. Fraser is supported by a David Phillips Fellowship from the Biotechnology and Biological Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L.-H. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C.LH., Pedersen, T.H. & Fraser, J.A. Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation. J Muscle Res Cell Motil 32, 171–202 (2011). https://doi.org/10.1007/s10974-011-9262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9262-9

Keywords

Navigation