Skip to main content
Log in

Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Skeletal muscle hypertrophy is a result of increased load, such as functional and stretch-overload. Activation of satellite cells and proliferation, differentiation and fusion are required for hypertrophy of overloaded skeletal muscles. On the contrary, a dramatic loss of skeletal muscle mass determines atrophy settings. The epigenetic changes involved in gene regulation at DNA and chromatin level are critical for the opposing phenomena, muscle growth and atrophy. Physiological properties of skeletal muscle tissue play a fundamental role in health and disease since it is the most abundant tissue in mammals. In fact, protein synthesis and degradation are finely modulated to maintain an appropriate muscle mass. When the molecular signaling is altered muscle wasting and weakness occurred, and this happened in most common inherited and acquired disorders such as muscular dystrophies, cachexia, and age-related wasting. To date, there is no accepted treatment to improve muscle size and strength, and these conditions pose a considerable anxiety to patients as well as to public health. Several molecules, including Magic-F1, myostatin inhibitor, IGF, glucocorticoids and microRNAs are currently investigated to interfere positively in the blueprint of skeletal muscle growth and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharyya S, Butchbach ME et al (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8(5):421–432

    CAS  PubMed  Google Scholar 

  • Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84(5):1716–1722

    CAS  PubMed  Google Scholar 

  • Adams GR, Caiozzo VJ et al (2002) Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 283(4):C1182–C1195

    CAS  PubMed  Google Scholar 

  • Adams GR, Caiozzo VJ et al (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95(6):2185–2201

    PubMed  Google Scholar 

  • Adi S, Bin-Abbas B et al (2002) Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation. Endocrinology 143(2):511–516

    CAS  PubMed  Google Scholar 

  • Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315

    CAS  PubMed  Google Scholar 

  • Allen RE, Sheehan SM et al (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312

    CAS  PubMed  Google Scholar 

  • Amthor H, Christ B et al (2002) Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth. Dev Biol 243(1):115–127

    CAS  PubMed  Google Scholar 

  • Amthor H, Otto A et al (2006) Myostatin imposes reversible quiescence on embryonic muscle precursors. Dev Dyn 235(3):672–680

    CAS  PubMed  Google Scholar 

  • Artaza JN, Bhasin S et al (2005) Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146(8):3547–3557

    CAS  PubMed  Google Scholar 

  • Aziz MH, Kumar R et al (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int J Oncol 23(1):17–28

    CAS  PubMed  Google Scholar 

  • Bamman MM, Shipp JR et al (2001) Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 280(3):E383–E390

    CAS  PubMed  Google Scholar 

  • Baracos VE (2001) Management of muscle wasting in cancer-associated cachexia: understanding gained from experimental studies. Cancer 92(6 Suppl):1669–1677

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Barton-Davis ER, Shoturma DI et al (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167(4):301–305

    CAS  PubMed  Google Scholar 

  • Beauchamp JR, Heslop L et al (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234

    CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708

    CAS  PubMed  Google Scholar 

  • Bogdanovich S, Krag TO et al (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421

    CAS  PubMed  Google Scholar 

  • Bogdanovich S, Perkins KJ et al (2005) Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. Faseb J 19(6):543–549

    CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    CAS  PubMed  Google Scholar 

  • Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11(4):440–448

    CAS  PubMed  Google Scholar 

  • Cassano M, Biressi S et al (2008) Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis. PLoS One 3(9):e3223

    PubMed  Google Scholar 

  • Chakravarthy MV, Davis BS et al (2000) IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 89(4):1365–1379

    CAS  PubMed  Google Scholar 

  • Charlier C, Coppieters W et al (1995) The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mamm Genome 6(11):788–792

    CAS  PubMed  Google Scholar 

  • Clarke BA, Drujan D et al (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385

    CAS  PubMed  Google Scholar 

  • Clop A, Marcq F et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    CAS  PubMed  Google Scholar 

  • Coleman ME, DeMayo F et al (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270(20):12109–12116

    CAS  PubMed  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3(3):397–409

    CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ et al (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577

    CAS  PubMed  Google Scholar 

  • Coulton GR, Curtin NA et al (1988a) The mdx mouse skeletal muscle myopathy: II. Contractile properties. Neuropathol Appl Neurobiol 14(4):299–314

    CAS  PubMed  Google Scholar 

  • Coulton GR, Morgan JE et al (1988b) The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14(1):53–70

    CAS  PubMed  Google Scholar 

  • Crisa A, Marchitelli C et al (2003) Sequence analysis of myostatin promoter in cattle. Cytogenet Genome Res 102(1–4):48–52

    CAS  PubMed  Google Scholar 

  • DeVol DL, Rotwein P (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259(1 Pt 1):E89–E95

    CAS  PubMed  Google Scholar 

  • Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673

    CAS  PubMed  Google Scholar 

  • Di Giovanni S, Molon A et al (2004) Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 55(2):195–206

    CAS  PubMed  Google Scholar 

  • Doumit ME, Cook DR et al (1996) Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 137(4):1385–1394

    CAS  PubMed  Google Scholar 

  • Ebisawa T, Fukuchi M et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–12480

    CAS  PubMed  Google Scholar 

  • Fiaccavento R, Carotenuto F et al (2005) Stem cell activation sustains hereditary hypertrophy in hamster cardiomyopathy. J Pathol 205(3):397–407

    CAS  PubMed  Google Scholar 

  • Fiorotto ML, Schwartz RJ et al (2003) Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth. Faseb J 17(1):59–60

    CAS  PubMed  Google Scholar 

  • Forte G, Minieri M et al (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24(1):23–33

    CAS  PubMed  Google Scholar 

  • Galvez BG, Sampaolesi M et al (2006) Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174(2):231–243

    CAS  PubMed  Google Scholar 

  • Gargioli C, Coletta M et al (2008) PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med 14(9):973–978

    CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH et al (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98(25):14440–14445

    CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    CAS  PubMed  Google Scholar 

  • Guttridge DC, Mayo MW et al (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289(5488):2363–2366

    CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93(1):394–403

    CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2004) Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. J Appl Physiol 96(1):203–210

    CAS  PubMed  Google Scholar 

  • Hameed M, Lange KH et al (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555(Pt 1):231–240

    CAS  PubMed  Google Scholar 

  • Hannan KM, Thomas G et al (2003) Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex. Biochem J 370(Pt 2):469–477

    CAS  PubMed  Google Scholar 

  • Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90(10):1055–1063

    CAS  PubMed  Google Scholar 

  • Heslop L, Morgan JE et al (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113(Pt 12):2299–2308

    CAS  PubMed  Google Scholar 

  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549(Pt 2):409–418

    CAS  PubMed  Google Scholar 

  • Hill JJ, Qiu Y et al (2003) Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol 17(6):1144–1154

    CAS  PubMed  Google Scholar 

  • Horsley V, Jansen KM et al (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494

    CAS  PubMed  Google Scholar 

  • Hribal ML, Nakae J et al (2003) Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162(4):535–541

    CAS  PubMed  Google Scholar 

  • Huang J, Forsberg NE (1998) Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci USA 95(21):12100–12105

    CAS  PubMed  Google Scholar 

  • Husmann I, Soulet L et al (1996) Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev 7(3):249–258

    CAS  PubMed  Google Scholar 

  • Iemura S, Yamamoto TS et al (1998) Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci USA 95(16):9337–9342

    CAS  PubMed  Google Scholar 

  • Joulia D, Bernardi H et al (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275

    CAS  PubMed  Google Scholar 

  • Kamei Y, Miura S et al (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279(39):41114–41123

    CAS  PubMed  Google Scholar 

  • Langenbach KJ, Rando TA (2002) Inhibition of dystroglycan binding to laminin disrupts the PI3 K/AKT pathway and survival signaling in muscle cells. Muscle Nerve 26(5):644–653

    CAS  PubMed  Google Scholar 

  • Langley B, Thomas M et al (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840

    CAS  PubMed  Google Scholar 

  • Lapidos KA, Kakkar R et al (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94(8):1023–1031

    CAS  PubMed  Google Scholar 

  • Latres E, Amini AR et al (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3 K/Akt/mTOR) pathway. J Biol Chem 280(4):2737–2744

    CAS  PubMed  Google Scholar 

  • Lecker SH, Solomon V et al (1999) Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104(10):1411–1420

    CAS  PubMed  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98(16):9306–9311

    CAS  PubMed  Google Scholar 

  • Lee CT, Risom T et al (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26(4):209–218

    CAS  PubMed  Google Scholar 

  • Li YP, Reid MB (2001) Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr Opin Rheumatol 13(6):483–487

    CAS  PubMed  Google Scholar 

  • Li YP, Lecker SH et al (2003) TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 17(9):1048–1057

    CAS  PubMed  Google Scholar 

  • Li Y, Takemura G et al (2003) Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation 107(19):2499–2506

    CAS  PubMed  Google Scholar 

  • Li ZF, Shelton GD et al (2005) Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. Am J Pathol 166(2):491–497

    CAS  PubMed  Google Scholar 

  • Li F, Zhang C et al (2005) ANG II-induced neointimal growth is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid artery. Am J Physiol Heart Circ Physiol 289(6):H2592–H2601

    CAS  PubMed  Google Scholar 

  • Ma K, Mallidis C et al (2001) Characterization of 5′-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. Am J Physiol Endocrinol Metab 281(6):E1128–E1136

    CAS  PubMed  Google Scholar 

  • Machida S, Spangenburg EE et al (2003) Forkhead transcription factor FoxO1 transduces insulin-like growth factor’s signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196(3):523–531

    CAS  PubMed  Google Scholar 

  • Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14(6):627–644

    CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JJ, Esser KA et al (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 293(1):C451–C457

    CAS  PubMed  Google Scholar 

  • McCroskery S, Thomas M et al (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147

    CAS  PubMed  Google Scholar 

  • McCroskery S, Thomas M et al (2005) Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 118(Pt 15):3531–3541

    CAS  PubMed  Google Scholar 

  • McElhinny AS, Kakinuma K et al (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157(1):125–136

    CAS  PubMed  Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248(1):125–130

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM et al (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109(5):595–601

    CAS  PubMed  Google Scholar 

  • Minetti GC, Colussi C et al (2006) Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12(10):1147–1150

    CAS  PubMed  Google Scholar 

  • Miro O, Pedrol E et al (1997) Skeletal muscle studies in patients with HIV-related wasting syndrome. J Neurol Sci 150(2):153–159

    CAS  PubMed  Google Scholar 

  • Mitch WE, Price SR (2001) Transcription factors and muscle cachexia: is there a therapeutic target? Lancet 357(9258):734–735

    CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    CAS  PubMed  Google Scholar 

  • Musaro A, McCullagh K et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27(2):195–200

    CAS  PubMed  Google Scholar 

  • Nakamura T, Takio K et al (1990) Activin-binding protein from rat ovary is follistatin. Science 247(4944):836–838

    CAS  PubMed  Google Scholar 

  • Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5(9):872–876

    CAS  PubMed  Google Scholar 

  • O’Rourke JR, Georges SA et al (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311(2):359–368

    PubMed  Google Scholar 

  • Phelan JN, Gonyea WJ (1997) Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle. Anat Rec 247(2):179–188

    CAS  PubMed  Google Scholar 

  • Price DA, Bassendine MF et al (2006) Apolipoprotein epsilon3 allele is associated with persistent hepatitis C virus infection. Gut 55(5):715–718

    CAS  PubMed  Google Scholar 

  • Putman CT, Dusterhoft S et al (1999) Changes in satellite cell content and myosin isoforms in low-frequency-stimulated fast muscle of hypothyroid rat. J Appl Physiol 86(1):40–51

    CAS  PubMed  Google Scholar 

  • Reimann J, Brimah K et al (2004) Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 315(2):233–242

    PubMed  Google Scholar 

  • Reisz-Porszasz S, Bhasin S et al (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285(4):E876–E888

    CAS  PubMed  Google Scholar 

  • Rios R, Carneiro I et al (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282(5):C993–C999

    CAS  PubMed  Google Scholar 

  • Roberts SB, Goetz FW (2001) Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett 491(3):212–216

    CAS  PubMed  Google Scholar 

  • Rosenblatt JD, Yong D et al (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17(6):608–613

    CAS  PubMed  Google Scholar 

  • Rudnicki MA, Le Grand F et al (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331

    CAS  PubMed  Google Scholar 

  • Sacheck JM, Ohtsuka A et al (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 287(4):E591–E601

    CAS  PubMed  Google Scholar 

  • Saitoh M, Pullen N et al (2002) Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. J Biol Chem 277(22):20104–20112

    CAS  PubMed  Google Scholar 

  • Salerno MS, Thomas M et al (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol 287(4):C1031–C1040

    CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    CAS  PubMed  Google Scholar 

  • Sampaolesi M, Biressi S et al (2005) Cell therapy of primary myopathies. Arch Ital Biol 143(3–4):235–242

    CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    CAS  PubMed  Google Scholar 

  • Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    CAS  Google Scholar 

  • Sandri M, Sandri C et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    CAS  PubMed  Google Scholar 

  • Sartorelli V, Fulco M (2004) Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE 2004(244):re11

    PubMed  Google Scholar 

  • Schakman O, Gilson H et al (2008) Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 197(1):1–10

    CAS  PubMed  Google Scholar 

  • Schiaffino S, Sandri M et al (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22:269–278

    CAS  Google Scholar 

  • Schuelke M, Wagner KR et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350(26):2682–2688

    CAS  PubMed  Google Scholar 

  • Secrist JP, Zhou X et al (2003) HDAC inhibitors for the treatment of cancer. Curr Opin Investig Drugs 4(12):1422–1427

    CAS  PubMed  Google Scholar 

  • Seuntjens E, Umans L et al (2009) Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev

  • Sever JL, Rakusan TA et al (1996) HIV antibody responses in children of HIV-infected mothers. Pediatr AIDS HIV Infect 7(4):246–253

    CAS  PubMed  Google Scholar 

  • Sherwood RI, Christensen JL et al (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554

    CAS  PubMed  Google Scholar 

  • Singh JP, Larson MG et al (2001) Genetic factors contribute to the variance in frequency domain measures of heart rate variability. Auton Neurosci 90(1–2):122–126

    CAS  PubMed  Google Scholar 

  • Southgate RJ, Bruce CR et al (2005) PGC-1alpha gene expression is down-regulated by Akt- mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. Faseb J 19(14):2072–2074

    CAS  PubMed  Google Scholar 

  • Southgate RJ, Neill B et al (2007) FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 282(29):21176–21186

    CAS  PubMed  Google Scholar 

  • Spiller MP, Kambadur R et al (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol 22(20):7066–7082

    CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J et al (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6):1133–1146

    CAS  PubMed  Google Scholar 

  • Stitt TN, Drujan D et al (2004) The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    CAS  PubMed  Google Scholar 

  • Suzuki N, Motohashi N et al (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117(9):2468–2476

    CAS  PubMed  Google Scholar 

  • Tran H, Brunet A et al (2003) The many forks in FOXO’s road. Sci STKE 2003(172):RE5

    PubMed  Google Scholar 

  • Voisin L, Gray K et al (1996) Altered expression of eukaryotic initiation factor 2B in skeletal muscle during sepsis. Am J Physiol 270(1 Pt 1):E43–E50

    CAS  PubMed  Google Scholar 

  • Wagner KR, McPherron AC et al (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52(6):832–836

    CAS  PubMed  Google Scholar 

  • Wagner KR, Liu X et al (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci USA 102(7):2519–2524

    CAS  PubMed  Google Scholar 

  • Wehling M, Cai B et al (2000) Modulation of myostatin expression during modified muscle use. Faseb J 14(1):103–110

    CAS  PubMed  Google Scholar 

  • Whalen RG, Harris JB et al (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141(1):24–40

    CAS  PubMed  Google Scholar 

  • Yang ZZ, Tschopp O et al (2004) Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32(Pt 2):350–354

    CAS  PubMed  Google Scholar 

  • Zammit P, Beauchamp J (2001) The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68(4-5):193–204

    CAS  PubMed  Google Scholar 

  • Zammit PS, Relaix F et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119(Pt 9):1824–1832

    CAS  PubMed  Google Scholar 

  • Zhu X, Topouzis S et al (2004) Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26(6):262–272

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Our work is supported by grants from FWO Odysseus Program n. G.0907.08; Wicka Funds n. zkb8720; the Italian Ministry of University and Scientific Research (grant n. 2005067555_003, PRIN 2006–08), Association Francoise contre les Myopathies, FP7 CARE-MI n.242038 and CARIPLO Foundation (grants n. 2007.5639 2008.2005). We are grateful to Catherine Verfaillie, Giulio Cossu and Danny Huleybrook for continuous support and Gianpaolo Papaccio for helpful discussion. We thank, Christina Vochten and Luigi Vercesi for the professional secretarial service, and Paolo Luban for a kind donation. We apologize to colleagues whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurilio Sampaolesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassano, M., Quattrocelli, M., Crippa, S. et al. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil 30, 243–253 (2009). https://doi.org/10.1007/s10974-010-9204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9204-y

Keywords

Navigation