Skip to main content
Log in

The ups and downs of gene regulation by electrical activity in skeletal muscles

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Adult skeletal muscles retain an adaptive capacity to switch between slow- and fast-twitch properties that are largely dependent on motoneuron activity. Our studies on the transcriptional regulation of the Troponin I slow (TnIs) and fast (TnIf) genes uncovered a dual mechanism of transcriptional enhancement and repression by a single activity pattern, that promotes the phenotypic differences among myofibers while preserving their adaptive capacity. Using the Tnf Fast Intronic Regulatory Element (FIRE), we initially demonstrated that fast-patterned activity (infrequent, high frequency depolarization) is necessary to up-regulate FIRE-dependent transcription and that its effect differs dramatically from muscle denervation. Hence, the “fast muscle program” is not a default state mimicked simply by denervation or muscle inactivity. Next, we found that slow-patterned activity (tonic, slow frequency stimulation) selectively represses FIRE-dependent transcription while enhancing transcription from the TnIs Slow Upstream Regulatory Element. Unexpectedly, repression of the TnIf FIRE by slow-patterned activity is mediated by an NFAT element that directly binds NFATc1, a transcription factor that translocates to the nucleus selectively by slow-pattern depolarization and has been implicated in the up-regulation of the slow muscle program. Transfection of siRNAs targeting NFATc1 or mutation of the TnIFIRE NFAT site result in the upregulation of FIRE-dependent transcription in slow muscle, but have no effect in fast muscle. These findings demonstrate a novel function of NFAT as a repressor of transcription of fast contractile genes in slow muscles and, more importantly, they illustrate how specific activity patterns can enhance the phenotypic differences among fibre-types by differentially regulating transcription in a use-dependent manner while retaining the adaptive properties of adult muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerjee-Basu S, Buonanno A (1993) cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol 13(11):7019–7028

    CAS  PubMed  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 150:417–439

    CAS  PubMed  Google Scholar 

  • Buonanno A, Rosenthal N (1996) Molecular control of muscle diversity and plasticity. Dev Genet 19(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Butler-Browne GS, Bugaisky LB, Cuenoud S, Schwartz K, Whalen RG (1982) Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature 299(5886):830–833

    Article  CAS  PubMed  Google Scholar 

  • Calvo S, Stauffer J, Nakayama M, Buonanno A (1996) Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. Dev Genet 19(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Calvo S, Vullhorst D, Venepally P, Cheng J, Karavanova I, Buonanno A (2001) Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Mol Cell Biol 21(24):8490–8503

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Gonzales M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and petterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 19:10813–10828

    CAS  PubMed  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev Biol 138(2):275–295

    Article  CAS  PubMed  Google Scholar 

  • DiMario JX, Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 188(1):167–180

    Article  CAS  PubMed  Google Scholar 

  • DiMario JX, Fernyak SE, Stockdale FE (1993) Myoblasts transferred to the limbs of embryos are committed to specific fibre fates. Nature 362(6416):165–167

    Article  CAS  PubMed  Google Scholar 

  • Eken T, Gundersen K (1988) Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles. J Physiol (Lond) 402:651–669

    CAS  Google Scholar 

  • Esser K, Gunning P, Hardeman E (1993) Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev Biol 159(1):173–183

    Article  PubMed  Google Scholar 

  • Gundersen K (1985) Early effects of denervation on isometric and isotonic contractile properties of rat skeletal muscles. Acta Phsiol Scand 124(4):549–555

    Article  CAS  Google Scholar 

  • Gundersen K (1998) Determination of muscle contractile properties: the importance of the nerve. Acta Physiol Scand 162(3):333–341

    Article  CAS  PubMed  Google Scholar 

  • Gundersen K, Eken T (1992) The importance of frequency and amount of electrical stimulation for contractile properties of denervated rat muscles. Acta Phsiol Scand. 145(1):49–57

    Article  CAS  Google Scholar 

  • Gutmann E, Melichna J, Syrovy I (1972) Contraction properties and ATPase activity in fast and slow muscle of the rat during denervation. Exp Neurol 36:488–497

    Article  CAS  PubMed  Google Scholar 

  • Hallauer PL, Hastings KE (2002) TnIfast IRE enhancer: multistep developmental regulation during skeletal muscle fiber type differentiation. Dev Dyn 224:422–431

    Article  CAS  PubMed  Google Scholar 

  • Hallauer PL, Bradshaw HL, Hastings KE (1993) Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development 119(3):691–701

    CAS  PubMed  Google Scholar 

  • Hastings KEM, Emerson CP (1982) cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins. Proc Natl Acad Sci USA 79:1553–1557

    Article  CAS  PubMed  Google Scholar 

  • Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314(6007):164–166

    Article  CAS  PubMed  Google Scholar 

  • Jerkovic R, Vitadello M, Kelly R, Buckingham M, Schiaffino S (1997) Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. J Muscle Res Cell Motil 18(3):369–373

    Article  CAS  PubMed  Google Scholar 

  • Lomo T, Westgaard RH, Dahl HA (1974) Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond B Biol Sci 187(1086):99–103

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Stockdale FE (1986) Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains. Proc Natl Acad Sci U S A 83(11):3860–3864

    Article  CAS  PubMed  Google Scholar 

  • Milner LD, Rafuse VF, Landmesser LT (1998) Selective fasciculation and divergent pathfinding decisions of embryonic chick motor axons projecting to fast and slow muscle regions. J Neurosci 18(9):3297–3313

    CAS  PubMed  Google Scholar 

  • Nakayama M, Stauffer J, Cheng J, Banerjee-Basu S, Wawrousek E, Buonanno A (1996) Common core sequences are found in skeletal muscle slow- and fast-fiber- type-specific regulatory elements. Mol Cell Biol 16(5):2408–2417

    CAS  PubMed  Google Scholar 

  • Personius KE, Balice-Gordon RJ (2001) Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses. Neuron 31(3):395–408

    Article  CAS  PubMed  Google Scholar 

  • Personius KE, Belice-Gordon RJ (2001) Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses. Neuron 31:395–408

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  CAS  PubMed  Google Scholar 

  • Rafuse VF, Milner LD, Landmesser LT (1996) Selective innervation of fast and slow muscle regions during early chick neuromuscular development. J Neurosci 16(21):6864–6877

    CAS  PubMed  Google Scholar 

  • Rana ZA, Gundersen K, Buonanno A, Vullhorst D (2005) Imaging transcription in vivo: distinct regulatory effects of fast and slow activity patterns on promoter elements from vertebrate troponin I isoform genes. J Physiol 562(Pt 3):815–828

    CAS  PubMed  Google Scholar 

  • Rana ZA, Gundersen K, Buoannao A (2008) Activity-dependent repression of muscle genes by NFAT. Proc Natl Acad Sci 105(15):5921–5926

    Article  CAS  PubMed  Google Scholar 

  • Salmons S, Sreter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263(5572):30–34

    Article  CAS  PubMed  Google Scholar 

  • Sartorelli V, Fulco M (2004) Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE 244:re11

    Google Scholar 

  • Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiol 22:269–278

    Article  CAS  Google Scholar 

  • Spangenburg EE, Booth FW (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178(4):413–424

    Article  CAS  PubMed  Google Scholar 

  • Thompson WJ, Condon K, Astrow SH (1990) The origin and selective innervation of early muscle fiber types in the rat. J Neurobiol 21(1):212–222

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Landmesser L (1987) Distribution of fiber types in embryonic chick limb muscles innervated by foreign motoneurons. Dev Biol 119(2):481–495

    Article  CAS  PubMed  Google Scholar 

  • Vrbova G, Navarrete R, Lowrie M (1985) Matching of muscle properties and motoneurone firing patterns during early stages of development. J Exp Biol 115:113–123

    CAS  PubMed  Google Scholar 

  • Windisch A, Gundersen K, Szabolcs MJ, Gruber H, Lomo T (1998) Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol 510(Pt 2):623–632

    Article  CAS  PubMed  Google Scholar 

  • Yu ZB, Gao F, Feng HZ, Jin JP (2007) Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading. Am J Physiol Cell Physiol 292(3):C1192–C1203

    Article  CAS  PubMed  Google Scholar 

  • Yutzey KE, Kline RL, Konieczny SF (1989) An internal regulatory element controls troponin I gene expression. Mol Cell Biol 9(4):1397–1405

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer A. Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, Z.A., Gundersen, K. & Buonanno, A. The ups and downs of gene regulation by electrical activity in skeletal muscles. J Muscle Res Cell Motil 30, 255–260 (2009). https://doi.org/10.1007/s10974-010-9200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9200-2

Keywords

Navigation