Skip to main content
Log in

Exploring the influence of the type of anion in imidazolium ionic liquids on its thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, three kinds of imidazole ionic liquids were selected as the research objects. Among them, 1-butyl-3-methyl-imidazole bis(trifluoromethylsulfonyl)imine ([BMIM][Tf2N]) was used for gas adsorption, while 1-butyl-3-methyl-imidazole acetate ([BMIM][Ac]) and 1-butyl-3-methyl-imidazole tetrafluoroborate ([BMIM][BF4]) were used as extractants to replace traditional organic extractants. The thermal stability of three selected ionic liquids was studied, and their decomposition pathway and thermal stability were compared to explore the correlation between them. Thermal decomposition characteristic of [BMIM][Ac], [BMIM][BF4], and [BMIM][Tf2N] was analyzed by thermogravimetric analysis. For these three ILs, dynamic thermogravimetric analyses under nitrogen atmosphere were performed using thermal gravimetric analyzer. The TG curve shows that the order of short-term thermal stability of three ionic liquids is [BMIM][Ac] < [BMIM][BF4] < [BMIM][Tf2N]. Both Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods were used to analyze the thermal dynamics of the experimental process. The apparent activation energies calculated by two different kinetic methods of the three ILs also have some slight differences. The possible influence of the decomposition mechanism on thermal stability was analyzed by thermogravimetric coupled with Fourier-transform infrared spectrometry (TG-FTIR). After analyzing the experimental results, it is obvious that as the thermal stability of ionic liquids increases, their decomposition mechanisms become more and more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (min–1)

E a :

Apparent activation energy (kJ mol–1)

R :

Molar gas constant (J mol–1 K–1)

T :

Absolute temperature at arbitrary time (K)

T onset :

Onset temperature (K)

T peak :

Peak temperature (K)

T f :

Final temperature (K)

α :

Conversion degree (Non-dimensional)

β :

Heating rate (K min–1)

g(α):

Integral form of kinetic model (function of the kinetic model expression)

References

  1. Rudnik E, Węgrzyn M, Kukfisz B, Kamocka-Bronisz R. Influence of ionic liquids on mechanical and thermal properties of polyethylene from renewable resources. J Therm Anal Calorim. 2022;147:1215–24.

    Article  CAS  Google Scholar 

  2. Liu S, Chen Y, Shi Y, Sun H, Zhou Z, Mu T. Investigations on the thermal stability and decomposition mechanism of an amine-functionalized ionic liquid by TGA, NMR, TG-MS experiments and DFT calculations. J Mol Liq. 2015;206:95–102.

    Article  CAS  Google Scholar 

  3. Yue D, Jing Y, Ma J, Yao Y, Jia Y. Physicochemical properties of ionic liquid analogue containing magnesium chloride as temperature and composition dependence. J Therm Anal Calorim. 2012;110:773–80.

    Article  CAS  Google Scholar 

  4. Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, et al. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: a spotlight. J Mol Liq. 2022;348:118329.

    Article  CAS  Google Scholar 

  5. Parajó JJ, Teijeira T, Fernández J, Salgado J, Villanueva M. Thermal stability of some imidazolium [NTf2] ionic liquids: isothermal and dynamic kinetic study through thermogravimetric procedures. J Chem Thermodyn. 2017;112:105–13.

    Article  Google Scholar 

  6. Agafonov AV, Shibaeva VD, Kraev AS, Guseinov SS, Ramenskaya LM, Kudryakova NO, et al. Effect of synthesis conditions on the properties of an ionic liquid in the 1-butyl-3-methylimidazolium acetate-Na-bentonite ionogel. Steric stabilization and confinement. J Mol Liq. 2020;315:113703.

    Article  CAS  Google Scholar 

  7. Fang DW, Gong L, Fan XT, Liang KH, Ma XX, Wei J. Low-temperature heat capacity and standard thermodynamic functions of the novel ionic liquid 1-(2-methoxyethyl)-3-ethyl imidazolium perrhenate. J Therm Anal Calorim. 2019;138:1437–42.

    Article  CAS  Google Scholar 

  8. Xing N, Li Z, Gu C, Pan Y, Guan W. The molar surface Gibbs free energy and its application for aqueous solutions of ionic liquid N-butyl-pyridinium dicyanamide [C4py][DCA]. J Therm Anal Calorim. 2016;126:855–62.

    Article  CAS  Google Scholar 

  9. Zhao Y, Zhang X, Zhen Y, Dong H, Zhao G, Zeng S, et al. Novel alcamines ionic liquids based solvents: preparation, characterization and applications in carbon dioxide capture. Int J Greenhouse Gas Control. 2011;5:367–73.

    Article  CAS  Google Scholar 

  10. Lin X, Kavian R, Lu Y, Hu Q, Shao-Horn Y, Grinstaff MW. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius. Chem Sci. 2015;6:6601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lohmoh M-A, Wirzal MDH, Halim NSA, Saad MS, Foong CY. Electrochemical stability on 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide ionic liquid for dye sensitized solar cell application. J Mol Liq. 2020;313:113594.

    Article  CAS  Google Scholar 

  12. Qu J, Bansal DG, Yu B, Howe JY, Luo H, Dai S, et al. Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Interfaces. 2012;4:997–1002.

    Article  CAS  PubMed  Google Scholar 

  13. Kar B, Ghosh P, Kundu K, Bardhan S, Paul BK, Das S. Benzimidazolium-based high temperature ionic liquid-in-oil microemulsion for regioselective nitration reaction. J Mol Liq. 2018;268:122–30.

    Article  CAS  Google Scholar 

  14. Liu Y-C, Jiang J-C, Huang A-C. Experimental study on extinguishing oil fire by water mist with polymer composite additives. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11645-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang G, Lin W-C, He P, Pan Y, Shu C-M. Thermal decomposition of imidazolium-based ionic liquid binary mixture: processes and mechanisms. J Mol Liq. 2018;272:37–42.

    Article  CAS  Google Scholar 

  16. Jiang HC, Lin WC, Hua M, Pan XH, Shu CM, Jiang JC. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. J Therm Anal Calorim. 2019;138:489–99.

    Article  CAS  Google Scholar 

  17. Tang Y, Li Z-P, Zhou H-L, Miao C-F, Jiang C-J, Huang A-C. Thermal stability assessment of nitrocellulose by using multiple calorimetric techniques and advanced thermokinetics. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11754-1.

    Article  Google Scholar 

  18. Dharaskar SA, Wasewar KL, Varma MN, Shende DZ, Yoo C. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arab J Chem Elsevier. 2016;9:578–87.

    Article  CAS  Google Scholar 

  19. Hillesheim PC, Mahurin SM, Fulvio PF, Yeary JS, Oyola Y, Jiang D, et al. Synthesis and characterization of thiazolium-based room temperature ionic liquids for gas separations. Ind Eng Chem Res. 2012;51:11530–7.

    Article  CAS  Google Scholar 

  20. Li L, Gu W, Laiwang B, Jiang JJ, Jiang JC, Shu CM. Effects of 1-butyl-3-metylimidazolium tetrafluoroborate on the thermal hazard of triacetone triperoxide (TATP). Process Saf Environ Prot. 2021;149:518–25.

    Article  CAS  Google Scholar 

  21. Weber M. Some safety aspects on the design of sparger systems for the oxidation of organic liquids. Process Saf Prog. 2006;25:326–30.

    Article  CAS  Google Scholar 

  22. Xue Z, Qin L, Jiang J, Mu T, Gao G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys Chem Chem Phys. 2018;20:8382–402.

    Article  CAS  PubMed  Google Scholar 

  23. Ueno K, Tokuda H, Watanabe M. Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys. 2010;12:1649–58.

    Article  CAS  PubMed  Google Scholar 

  24. Efimova A, Varga J, Matuschek G, Saraji-Bozorgzad MR, Denner T, Zimmermann R, et al. Thermal resilience of imidazolium-based ionic liquids—studies on short- and long-term thermal stability and decomposition mechanism of 1-alkyl-3-methylimidazolium halides by thermal analysis and single-photon ionization time-of-flight mass spectrometry. J Phys Chem B. 2018;122:8738–49.

    Article  CAS  PubMed  Google Scholar 

  25. Cao Y, Sun X, Chen Y, Mu T. Water sorption in amino acid ionic liquids: kinetic, mechanism, and correlations between hygroscopicity and solvatochromic parameters. ACS Sustain Chem Eng. 2014;2:138–48.

    Article  CAS  Google Scholar 

  26. Wang B, Qin L, Mu T, Xue Z, Gao G. Are ionic liquids chemically stable? Chem Rev. 2017;117:7113–31.

    Article  CAS  PubMed  Google Scholar 

  27. Efimova A, Pfützner L, Schmidt P. Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochim Acta. 2015;604:129–36.

    Article  CAS  Google Scholar 

  28. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn. 2005;37:559–68.

    Article  CAS  Google Scholar 

  29. Maton C, Vos ND, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42:5963–77.

    Article  CAS  PubMed  Google Scholar 

  30. Kroon MC, Buijs W, Peters CJ, Witkamp G-J. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta. 2007;465:40–7.

    Article  CAS  Google Scholar 

  31. Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–358:97–102.

    Article  Google Scholar 

  32. Wendler F, Todi L-N, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.

    Article  CAS  Google Scholar 

  33. Jiang J, Duan W, Wei Q, Zhao X, Ni L, Pan Y, et al. Development of quantitative structure-property relationship (QSPR) models for predicting the thermal hazard of ionic liquids: a review of methods and models. J Mol Liq. 2020;301:112471.

    Article  CAS  Google Scholar 

  34. Thomas E, Vijayalakshmi KP, George BK. Kinetic stability of imidazolium cations and ionic liquids: a frontier molecular orbital approach. J Mol Liq. 2019;276:721–7.

    Article  CAS  Google Scholar 

  35. MacFarlane DR, Forsyth SA, Golding J, Deacon GB. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem. 2002;4:444–8.

    Article  CAS  Google Scholar 

  36. Tokuda H, Ishii K, Susan Md ABH, Tsuzuki S, Hayamizu K, Watanabe M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B. 2006;110:2833–9.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou H-L, Jiang J-C, Huang A-C, Tang Y, Zhang Y, Huang C-F, et al. Calorimetric evaluation of thermal stability and runaway hazard based on thermokinetic parameters of O, O–dimethyl phosphoramidothioate. J Loss Prev Process Ind Elsevier. 2022;75:104697.

    Article  CAS  Google Scholar 

  38. Yang N, Jiang JC, Huang AC, Tang Y, Li ZP, Cui JW, et al. Thermokinetic model-based experimental and numerical investigation of the thermal hazards of nitrification waste. J Loss Prev Process Ind Elsevier. 2022;79:104836.

    Article  CAS  Google Scholar 

  39. Wang Y, Liu S-H, Chiang C-L, Zhang L-Y, Wang W-T. The effect of oxygen on the thermal stability and decomposition behaviours of 1, 3-dimethylimidazolium nitrate for application using STA, ARC and FTIR. Process Saf Environ Prot Elsevier. 2022;162:513–9.

    Article  CAS  Google Scholar 

  40. Guo RL, Liu SH, Shu CM. Thermal hazard evaluation conjoined with product analysis of two water- soluble azo compounds. J Therm Anal Calorim. 2022;147:10775–84.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Chrissafis K, di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  44. Ullah Z, Bustam MA, Man Z, Khan AS. Thermal stability and kinetic study of benzimidazolium based ionic liquid. Procedia Eng. 2016;148:215–22.

    Article  CAS  Google Scholar 

  45. Rajeshwari P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim. 2016;123:1523–44.

    Article  CAS  Google Scholar 

  46. Murray P, White J. Kinetics of thermal dehydration of clays–4. Trans Br Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  47. Fasina O, Littlefield B. TG-FTIR analysis of pecan shells thermal decomposition. Fuel Process Technol. 2012;102:61–6.

    Article  CAS  Google Scholar 

  48. Khan AS, Man Z, Bustam MA, Kait CF, Ullah Z, Nasrullah A, et al. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq. 2016;223:754–62.

    Article  CAS  Google Scholar 

  49. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  50. Villanueva M, Parajó JJ, Sánchez PB, García J, Salgado J. Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps. J Chem Thermodyn. 2015;91:127–35.

    Article  CAS  Google Scholar 

  51. Villanueva M, Coronas A, García J, Salgado J. Thermal stability of ionic liquids for their application as new absorbents. Ind Eng Chem Res. 2013;52:15718–27.

    Article  CAS  Google Scholar 

  52. Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014;53:8651–64.

    Article  CAS  Google Scholar 

  53. Fredlake CP, Crosthwaite JM, Hert DG, Aki NSVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data. 2004;49:954–64.

    Article  CAS  Google Scholar 

  54. Wang W-T, Liu S-H, Wang Y, Yu C-F, Cheng Y-F, Shu C-M. Thermal stability and exothermic behaviour of imidazole ionic liquids with different anion types under oxidising and inert atmospheres. J Mol Liq. 2021;343:117691.

    Article  CAS  Google Scholar 

  55. Lázaro Martínez JM, Chattah AK, Monti GA, Leal Denis MF, Buldain GY, Campo Dall’ Orto V. New copper(II) complexes of polyampholyte and polyelectrolyte polymers: solid-state NMR, FTIR, XRPD and thermal analyses. Polymer (Guildf). 2008;49:5482–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China, under Contract Number 52104177, and the Anhui Provincial Natural Science Foundation, China, under Contract Number 1908085ME125.

Author information

Authors and Affiliations

Authors

Contributions

KFW performed writing—original draft preparation (lead), writing—review and editing (lead), formal analysis (lead), and visualization (lead). SHL contributed to methodology (lead), formal analysis (supporting), and funding acquisition (lead). YW performed formal analysis (supporting) and funding acquisition (supporting).

Corresponding author

Correspondence to Shang-Hao Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LY., Liu, SH. & Wang, Y. Exploring the influence of the type of anion in imidazolium ionic liquids on its thermal stability. J Therm Anal Calorim 148, 4985–4995 (2023). https://doi.org/10.1007/s10973-023-12037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12037-z

Keywords

Navigation