Skip to main content
Log in

A comparative review on thermal behavior of feedstocks during gasification via thermogravimetric analyzer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With increasing initiatives on “clean power plan” and “carbon neutrality,” gasification is one of the most promising ways toward cleaner energy production using a diverse range of feedstocks. However, prior to gasification, the feedstock must be thoroughly analyzed. The characteristics of various feedstocks, including coal, biomass, petcoke, municipal solid waste (MSW), and their blends, are studied using thermogravimetric analysis (TGA). TGA is widely employed to examine the effect of various parameters, such as time, temperature, heating rate, residence time, pressure, gas composition, and particle size, on the gasification reactivity and kinetics of different carbonaceous feedstocks. Since it is realistic, rapid, reliable, and cost-effective, it is a widely used technique. This review details various thermal analysis techniques, including TGA, differential thermal analysis, and derivative thermogravimetry that can be used for feedstock characterization. The objective of this review is to compare and analyze the reactivity and kinetics behavior of various feedstocks during gasification using TGA. It was observed that the reactivity of biomass is found to be greater than that of MSW, coal, and petcoke with their activation energy in the range of 56–230 kJ mol−1, 100–275 kJ mol−1, 58–250 kJ mol−1, and 120–640 kJ mol−1. This paper will also help in predicting the suitability of different feeds for gasification as well as selecting/designing suitable gasifier. It does highlight different feedstocks used in gasification, along with several thermal analysis techniques. Additionally, in this overview directions of future progress are anticipated for its sound development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. COP26 Goals-UN climate change conference (COP26) at the SEC—Glasgow 2021 [Internet]. [cited 2022 Jan 10]. Available from: https://ukcop26.org/cop26-goals/.

  2. BP. Statistical review of world energy globally consistent data on world energy markets. BP Energy Outlook. 2021;70:8–20.

    Google Scholar 

  3. Coal-Fuels & Technologies-IEA [Internet]. [cited 2022 Jan 10]. Available from: https://www.iea.org/fuels-and-technologies/coal.

  4. UN chief calls for immediate global action to phase out coal | UNFCCC [Internet]. [cited 2022 Jan 10]. Available from: https://unfccc.int/news/un-chief-calls-for-immediate-global-action-to-phase-out-coal.

  5. Rajabi M, Mehrpooya M, Haibo Z, Huang Z. Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: a critical review. Appl Energy. 2019;253:113544. https://doi.org/10.1016/j.apenergy.2019.113544.

    Article  CAS  Google Scholar 

  6. Gasification Market Size, Growth | Global Industry Trends [2028] [Internet]. [cited 2022 Mar 29]. Available from: https://www.fortunebusinessinsights.com/gasification-market-103487.

  7. Higman C, Burgt MVD. Gasification. 2nd ed. Elsevier; 2008.

    Google Scholar 

  8. Basu P. Biomass gasification, pyrolysis and torrefaction practical design and theory. 3rd ed. Elsevier; 2018.

    Google Scholar 

  9. Speight JG. Feedstocks. In: Speight JG, editor. Gasification of unconventional feedstocks. 2014. pp. 1–29. https://doi.org/10.1016/B978-0-12-799911-1.00001-7.

  10. Puig-Gamero M, Lara-Díaz J, Valverde JL, Sánchez P, Sanchez-Silva L. Synergestic effect in the steam co-gasification of olive pomace, coal and petcoke: thermogravimetric-mass spectrometric analysis. Energy Convers Manag. 2018;159:140–50. https://doi.org/10.1016/j.enconman.2018.01.011.

    Article  CAS  Google Scholar 

  11. Wei J, Guo Q, He Q, Ding L, Yoshikawa K, Yu G. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: reactivity and synergy. Bioresour Technol. 2017;239:482–9. https://doi.org/10.1016/j.biortech.2017.05.014.

    Article  CAS  Google Scholar 

  12. Thermogravimetric analysis—Wikipedia [Internet]. [cited 2022 Mar 29]. Available from: https://en.wikipedia.org/wiki/Thermogravimetric_analysis.

  13. Afrooz IE, Ching DLC. A modified model for kinetic analysis of petroleum coke. Int J Chem Eng. 2019;2019:2034983. https://doi.org/10.1155/2019/2034983.

    Article  CAS  Google Scholar 

  14. Differential thermal analysis—Wikipedia [Internet]. [cited 2022 Mar 29]. Available from: https://en.wikipedia.org/wiki/Differential_thermal_analysis.

  15. Glushkov D, Nyashina G, Shvets A, Pereira A, Ramanathan A. Current status of the pyrolysis and gasification mechanism of biomass. Energies. 2021;14:7541. https://doi.org/10.3390/en14227541.

    Article  CAS  Google Scholar 

  16. Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Kumar M, Palem RR, AL-Shwaiman HA, Elgorban AM, Syed A, Kim DY. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: state-of-the-art framework to speed up vision of circular bioeconomy. J Clean Prod. 2021;297:126645. https://doi.org/10.1016/j.jclepro.2021.126645.

    Article  CAS  Google Scholar 

  17. Bamboriya OP, Thakur LS, Parmar H, Varma AK, Hinge VK. A review on mechanism and factors affecting pyrolysis of biomass. Int J Res Advent Technol. 2019;7:1014–24.

    Google Scholar 

  18. Uddin MN, Techato K, Taweekun J, Rahman MM, Rasul MG, Mahlia TMI, Ashrafur SM. An overview of recent developments in biomass pyrolysis technologies. Energies. 2018;11:3115. https://doi.org/10.3390/en11113115.

    Article  CAS  Google Scholar 

  19. Kamble AD, Saxena VK, Chavan PD, Mendhe VA. Co-gasification of coal and biomass an emerging clean energy technology: status and prospects of development in Indian context. Int J Min Sci Technol. 2018;29:171–86. https://doi.org/10.1016/j.ijmst.2018.03.011.

    Article  CAS  Google Scholar 

  20. Petroleum coke—Wikipedia [Internet]. [cited 2022 Mar 29]. Available from: https://en.wikipedia.org/wiki/Petroleum_coke.

  21. Available from: https://personal.ems.psu.edu/~radovic/Chapter7.pdf.

  22. Edreis EMA, Li X, Atya AHA, Sharshir SW, Elsheikh AH, Mahmoud NM, Luo G, Yao H. Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H2O co-gasification. Int J Hydrogen Energy. 2020;45:24502–17. https://doi.org/10.1016/j.ijhydene.2020.06.239.

    Article  CAS  Google Scholar 

  23. Xu F, Wang B, Yang D, Qiao Y, Tian Y. The steam gasification reactivity and kinetics of municipal solid waste chars derived from rapid pyrolysis. Waste Manag. 2018;80:64–72. https://doi.org/10.1016/j.wasman.2018.09.006.

    Article  CAS  Google Scholar 

  24. Lawal AI, Aladejare AE, Onifade M, Bada S, Idris MA. Predictions of elemental composition of coal and biomass from their proximate analyses using ANFIS, ANN and MLR. Int J Coal Sci Technol. 2021;8:124–40. https://doi.org/10.1007/s40789-020-00346-9.

    Article  CAS  Google Scholar 

  25. Higman C. State of the gasification industry: worldwide gasification and syngas databases 2016 update. In: Gasification & Syngas Technologies conference. 2016. Available from: https://www.netl.doe.gov/sites/default/files/2021-04/2016-Wed-Higman.pdf.

  26. Lee SY, Alam MT, Han GH, Choi DH, Park SW. Gasification applicability of korean municipal waste derived solid fuel: a comparative study. Processes. 2020;8:1375. https://doi.org/10.3390/pr8111375.

    Article  CAS  Google Scholar 

  27. Gasification—Wikipedia [Internet]. [cited 2022 Jan 10]. Available from: https://en.wikipedia.org/wiki/Gasification#Feedstock.

  28. Gupta PK, Kumar V, Maity S. Renewable fuels from different carbonaceous feedstocks: a sustainable route through Fischer–Tropsch synthesis. J Chem Technol Biotechnol. 2021;96:853–68. https://doi.org/10.1002/jctb.6644.

    Article  CAS  Google Scholar 

  29. IEA. Coal 2021. Coal [Internet]. 2021;125. Available from: https://www.iea.org/fuels-and-technologies/coal%0Awww.iea.org/t&c/.

  30. Wei J, Wang M, Wang F, Song X, Yu G, Liu Y, Vuthaluru H, Xu J, Xu Y, Zhang H, Zhang S. A review on reactivity characteristics and synergy behavior of biomass and coal Co-gasification. Int J Hydrog Energy. 2021;46:17116–32. https://doi.org/10.1016/j.ijhydene.2021.02.162.

    Article  CAS  Google Scholar 

  31. Luque R, Speight JG. Gasification for synthetic fuel production: fundamentals, processes and applications. 1st ed. Amsterdam: Elsevier; 2015. https://doi.org/10.1016/C2013-0-16368-4.

    Book  Google Scholar 

  32. Biomass Energy Basics | NREL [Internet]. [cited 2022 Mar 29]. Available from: https://www.nrel.gov/research/re-biomass.html.

  33. IEA. Renewables 2021. Int Energy Agency Publ Int [Internet]. 2021;167. Available from: www.iea.org/t&c/%0A. https://webstore.iea.org/download/direct/4329.

  34. Biomass Gasification Market Size, Trends and Forecast 2021–2026 [Internet]. [cited 2022 Mar 29]. Available from: https://www.imarcgroup.com/biomass-gasification-plant.

  35. Mishra S, Upadhyay RK. Review on biomass gasification: gasifiers, gasifying mediums, and operational parameters. Mater Sci Energy Technol. 2021;4:329–40. https://doi.org/10.1016/j.mset.2021.08.009.

    Article  CAS  Google Scholar 

  36. Global Biomass Market is Expected to Grow at a CAGR of 6.3% [Internet]. [cited 2022 Mar 29]. Available from: https://www.globenewswire.com/news-release/2022/01/24/2371558/0/en/Global-Biomass-Market-is-Expected-to-Grow-at-a-CAGR-of-6-3-from-2021-to-2030-Quince-Market-Insights.html.

  37. Gajera ZR, Verma K, Tekade SP, Sawarkar AN. Kinetics of co-gasification of rice husk biomass and high sulphur petroleum coke with oxygen as gasifying medium via TGA. Bioresour Technol Rep. 2020;11: 100479. https://doi.org/10.1016/j.biteb.2020.100479.

    Article  Google Scholar 

  38. Biomass—Wikipedia [Internet]. [cited 2022 Mar 29]. Available from: https://en.wikipedia.org/wiki/Biomass.

  39. Mafu LD, Neomagus HWJP, Everson RC, Okolo GN, Strydom CA, Bunt JR. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification. Bioresour Technol. 2018;258:70–8. https://doi.org/10.1016/j.biortech.2017.12.053.

    Article  CAS  Google Scholar 

  40. Siengchum T, Isenberg M, Chuang SSC. Fast pyrolysis of coconut biomass—an FTIR study. Fuel. 2013;105:559–65. https://doi.org/10.1016/j.fuel.2012.09.039.

    Article  CAS  Google Scholar 

  41. Nemanova V, Abedini A, Liliedahl T, Engvall K. Co-gasification of petroleum coke and biomass. Fuel. 2014;117:870–5. https://doi.org/10.1016/j.fuel.2013.09.050.

    Article  CAS  Google Scholar 

  42. Kumari N, Saha S, Sahu G, Chauhan V, Roy R, Datta S, Chavan PD. Comparison of CO2 gasification reactivity and kinetics: petcoke, biomass and high ash coal. Biomass Convers Biorefin. 2022;12:2277–90. https://doi.org/10.1007/s13399-020-00882-z.

    Article  CAS  Google Scholar 

  43. Murthy BN, Sawarkar AN, Deshmukh NA, Mathew T, Joshi JB. Petroleum coke gasification: a review. Can J Chem Eng. 2014;92:441–68. https://doi.org/10.1002/cjce.21908.

    Article  CAS  Google Scholar 

  44. Jayaraman K, Gokalp I. Gasification characteristics of petcoke and coal blended petcoke using thermogravimetry and mass spectrometry analysis. Appl Therm Eng. 2015;80:10–9. https://doi.org/10.1016/j.applthermaleng.2015.01.026.

    Article  CAS  Google Scholar 

  45. Ministry of Petroleum and Natural Gas. [cited 2022 Mar 30]; Available from: www.petroleum.nic.in.

  46. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank; 2018.

    Book  Google Scholar 

  47. Gerassimidou S, Velis CA, Williams PT, Komilis D. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: a review. Waste Manag Res. 2020;38:942–65. https://doi.org/10.1177/0734242X20941085.

    Article  CAS  Google Scholar 

  48. Municipal solid waste - Wikipedia [Internet]. [cited 2022 Mar 29]. Available from: https://en.wikipedia.org/wiki/Municipal_solid_waste#Composition.

  49. Olatunji OO, Akinlabi SA, Mashinini MP, Fatoba SO, Ajayi OO. Thermo-gravimetric characterization of biomass properties: a review. IOP Conf Ser Mater Sci Eng. 2018;423:012175. https://doi.org/10.1088/1757-899X/423/1/012175.

    Article  Google Scholar 

  50. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  51. Feist M. Thermal analysis: basics, applications, and benefit. ChemTexts. 2015;1:1–12. https://doi.org/10.1007/s40828-015-0008-y.

    Article  Google Scholar 

  52. Yu J, Guo Q, Ding L, Gong Y, Yu G. Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel. 2020;270: 117603. https://doi.org/10.1016/j.fuel.2020.117603.

    Article  CAS  Google Scholar 

  53. Hu Q, Yang H, Xu H, Wu Z, Lim CJ, Bi XT, et al. Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy Convers Manag. 2018;161:205–14. https://doi.org/10.1016/j.enconman.2018.02.003.

    Article  CAS  Google Scholar 

  54. Emiola-Sadiq T, Zhang L, Dalai AK. Thermal and kinetic studies on biomass degradation via thermogravimetric analysis: a combination of model-fitting and model-free approach. ACS Omega. 2021;6:22233–47. https://doi.org/10.1021/acsomega.1c02937.

    Article  CAS  Google Scholar 

  55. Fan D, Zhu Z, Na Y, Lu Q. Thermogravimetric analysis of gasification reactivity of coal chars with steam and CO2 at moderate temperatures. J Therm Anal Calorim. 2013;113:599–607. https://doi.org/10.1007/s10973-012-2838-9.

    Article  CAS  Google Scholar 

  56. Czajka KM. Gasification of coal by CO2: the impact of the heat transfer limitation on the progress, reaction rate and kinetics of the process. Energies. 2021;14:5569. https://doi.org/10.3390/en14175569.

    Article  CAS  Google Scholar 

  57. El-Sayed SA, Mostafa ME. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag. 2014;85:165–72. https://doi.org/10.1016/j.enconman.2014.05.068.

    Article  Google Scholar 

  58. Tanzi MC, Farè S, Candiani G. Techniques of Analysis. In: Tanzi MC, Fare S, Candiani G, editors. Foundations of biomaterials engineering. 2019. https://doi.org/10.1016/B978-0-08-101034-1.00007-4.

  59. Saikia P. Physical and thermal analysis of polymer. In: AlMaadeed MAA, Ponnamma D, Carignano MA, editors. Polymer science and innovative applications. Elsevier; 2020. p. 153–205. https://doi.org/10.1016/B978-0-12-816808-0.00005-6.

    Chapter  Google Scholar 

  60. Hussein MSI, Morrison M, Amano R. Simultaneous differential thermal and thermogravimetric analysis of chicken manure gasification using nitrogen, air, and carbon dioxide. In: 14th International energy conversion engineering conference. 2016. https://doi.org/10.2514/6.2016-5020.

  61. Borchardt HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6. https://doi.org/10.1021/ja01558a009.

    Article  CAS  Google Scholar 

  62. Liu Z. Review and prospect of thermal analysis technology applied to study thermal properties of energetic materials. FirePhysChem. 2021;1:129–38. https://doi.org/10.1016/j.fpc.2021.05.002.

    Article  Google Scholar 

  63. Das T, Saikia A, Mahanta B, Choudhury R, Saikia BK. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals. J Earth Syst Sci. 2016;125:1365–77. https://doi.org/10.1007/s12040-016-0743-5.

    Article  CAS  Google Scholar 

  64. Tanner J, Bhattacharya S. Kinetics of CO2 and steam gasification of Victorian brown coal chars. Chem Eng J. 2016;285:331–40. https://doi.org/10.1016/j.cej.2015.09.106.

    Article  CAS  Google Scholar 

  65. Sangtong-Ngam K, Narasingha MH. Kinetic study of Thai-lignite char gasification using the random pore model. Thammasat Int J Sc Tech. 2008;13:16–26.

    Google Scholar 

  66. Komarova E, Abosteif Z, Guhl S, Meyer B. Brown coal char CO2-gasification kinetics with respect to the char structure part II: kinetics and correlations. Can J Chem Eng. 2019;97:226–37. https://doi.org/10.1002/cjce.23329.

    Article  CAS  Google Scholar 

  67. Dingcheng L, Qiang X, Guangsheng L, Junya C, Jun Z. Influence of heating rate on reactivity and surface chemistry of chars derived from pyrolysis of two Chinese low rank coals. Int J Min Sci Technol. 2018;28:613–9. https://doi.org/10.1016/j.ijmst.2018.05.001.

    Article  CAS  Google Scholar 

  68. He Q, Gong Y, Ding L, Guo Q, Yoshikawa K, Yu G. Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification. Energy. 2021;229: 120724. https://doi.org/10.1016/j.energy.2021.120724.

    Article  CAS  Google Scholar 

  69. He Q, Gong Y, Ding L, Wang X, Yu G. Effect of ash removal on structure and pyrolysis/gasification reactivity of a Chinese bituminous coal. Int J Coal Sci Technol. 2020;7:444–55. https://doi.org/10.1007/s40789-020-00353-w.

    Article  CAS  Google Scholar 

  70. Kim RG, Hwang CW, Jeon CH. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure. Appl Energy. 2014;129:299–307. https://doi.org/10.1016/j.apenergy.2014.05.011.

    Article  CAS  Google Scholar 

  71. Tomaszewicz M, Tomaszewicz G, Sciazko M. Experimental study on kinetics of coal char–CO2 reaction by means of pressurized thermogravimetric analysis. J Therm Anal Calorim. 2017;130:2315–30. https://doi.org/10.1007/s10973-017-6538-3.

    Article  CAS  Google Scholar 

  72. Kök MV, Yildirim B. Gasification kinetics of Thrace region coal by thermogravimetry analysis. J Pet Sci Eng. 2020;188: 106869. https://doi.org/10.1016/j.petrol.2019.106869.

    Article  CAS  Google Scholar 

  73. Irfan MF, Usman MR, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review. Energy. 2011;36:12–40. https://doi.org/10.1016/j.energy.2010.10.034.

    Article  CAS  Google Scholar 

  74. Bui HH, Wang L, Tran KQ, Skreiberg Ø. CO2 gasification of charcoals produced at various pressures. Fuel Process Technol. 2016;152:207–14. https://doi.org/10.1016/j.fuproc.2016.06.033.

    Article  CAS  Google Scholar 

  75. Phounglamcheik A, Wang L, Romar H, Kienzl N, Broström M, Ramser K, et al. Effects of pyrolysis conditions and feedstocks on the properties and gasification reactivity of charcoal from woodchips. Energy Fuels. 2020;34:8353–65. https://doi.org/10.1021/acs.energyfuels.0c00592.

    Article  CAS  Google Scholar 

  76. Bach QV, Chen WH, Sheen HK, Chang JS. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide. Bioresour Technol. 2017;244:1393–9. https://doi.org/10.1016/j.biortech.2017.03.153.

    Article  CAS  Google Scholar 

  77. Wang B, Li Y, Zhou J, Wang Y, Tao X, Zhang X, Song W. Thermogravimetric and kinetic analysis of high-temperature thermal conversion of pine wood sawdust under CO2/Ar. Energies. 2021;14:5328. https://doi.org/10.3390/en14175328.

    Article  CAS  Google Scholar 

  78. Parvez AM, Wu T, Hong Y, Chen W, Lester EH, Mareta S, Afzal M. Gasification reactivity and synergistic effect of conventional and microwave pyrolysis derived algae chars in CO2 atmosphere. J Energy Inst. 2019;92:730–40. https://doi.org/10.1016/j.joei.2018.02.009.

    Article  CAS  Google Scholar 

  79. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts. Bioresour Technol. 2013;144:288–95. https://doi.org/10.1016/j.biortech.2013.06.059.

    Article  CAS  Google Scholar 

  80. Xiao R, Yang W. Kinetics characteristics of straw semi-char gasification with carbon dioxide. Bioresour Technol. 2016;207:180–7. https://doi.org/10.1016/j.biortech.2016.02.010.

    Article  CAS  Google Scholar 

  81. Malekshahian M, Hill JM. Kinetic analysis of CO2 gasification of petroleum coke at high pressures. Energy Fuels. 2011;25:4043–8. https://doi.org/10.1021/ef2009259.

    Article  CAS  Google Scholar 

  82. Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH. Modeling reaction kinetics of petroleum coke gasification with CO2. Chem Eng Process. 2007;46:630–6. https://doi.org/10.1016/j.cep.2006.08.008.

    Article  CAS  Google Scholar 

  83. Li C, Liu X, Zhou Z, Dai Z, Yang J, Wang F. Effect of heat treatment on structure and gasification reactivity of petroleum coke. Int J Coal Sci Technol. 2016;3:53–61. https://doi.org/10.1007/s40789-016-0109-2.

    Article  CAS  Google Scholar 

  84. Ren L, Wei R, Zhu T, Xin J. Novel kinetic model for Petcoke gasification at high temperature. Energy Fuels. 2019;33:10638–50. https://doi.org/10.1021/acs.energyfuels.9b02446.

    Article  CAS  Google Scholar 

  85. Liu X, Zhou ZJ, Zhang BS, Chen L, Wang FC. Effect of microwave treatment on structural changes and gasification reactivity of petroleum coke. Ind Eng Chem Res. 2011;50:9063–8. https://doi.org/10.1021/ie2007328.

    Article  CAS  Google Scholar 

  86. Yu X, Yu D, Liu F, Wu J, Xu M. High-temperature pyrolysis of petroleum coke and its correlation to in-situ char-CO2 gasification reactivity. Proc Combust Inst. 2021;38:3995–4003. https://doi.org/10.1016/j.proci.2020.09.030.

    Article  CAS  Google Scholar 

  87. Hla SS, Lopes R, Roberts D. The CO2 gasification reactivity of chars produced from Australian municipal solid waste. Fuel. 2016;185:847–54. https://doi.org/10.1016/j.fuel.2016.08.039.

    Article  CAS  Google Scholar 

  88. Wang G, Zhang J, Hou X, Shao J, Geng W. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char. Bioresour Technol. 2015;177:66–73. https://doi.org/10.1016/j.biortech.2014.11.063.

    Article  CAS  Google Scholar 

  89. Wei R, Ren L, Geng F. Gasification reactivity and characteristics of coal chars and petcokes. J Energy Inst. 2021;96:25–30. https://doi.org/10.1016/j.joei.2020.07.012.

    Article  CAS  Google Scholar 

  90. Wang G, Zhang J, Geng W, Shao J. A modified random pore model for gasification kinetics of coal char and biomass char. In: TMS 2015 144th annual meeting and exhibition. 2015. pp. 841–848. https://doi.org/10.1007/978-3-319-48127-2_102.

  91. Gu J, Wu S, Zhang X, Wu Y, Gao J. CO2-gasification reactivity of different carbonaceous materials at elevated temperatures. Energy Sources Part A. 2009;31:232–43.

    Article  CAS  Google Scholar 

  92. Huo W, Zhou Z, Chen X, Dai Z, Yu G. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars. Bioresour Technol. 2014;159:143–9. https://doi.org/10.1016/j.biortech.2014.02.117.

    Article  CAS  Google Scholar 

  93. Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim. 2008;91:779–86. https://doi.org/10.1007/s10973-007-8623-5.

    Article  CAS  Google Scholar 

  94. Naidu VS, Aghalayam P, Jayanti S. Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim. 2016;123:467–78. https://doi.org/10.1007/s10973-015-4930-4.

    Article  CAS  Google Scholar 

  95. Jalalabadi T, Li C, Yi H, Lee D. A TGA study of CO2 gasification reaction of various types of coal and biomass. J Mech Sci Technol. 2016;30:3275–81. https://doi.org/10.1007/s12206-016-0636-1.

    Article  Google Scholar 

  96. Wu Y, Wu S, Gu J, Gao J. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke. Process Saf Environ Prot. 2009;87:323–30. https://doi.org/10.1016/j.psep.2009.05.001.

    Article  CAS  Google Scholar 

  97. Parvez AM, Hong Y, Lester E, Wu T. Enhancing the reactivity of petroleum coke in CO2 via co-processing with selected carbonaceous materials. Energy Fuels. 2017;31:1555–63. https://doi.org/10.1021/acs.energyfuels.6b02000.

    Article  CAS  Google Scholar 

  98. Fermoso J, Gil MV, Pevida C, Pis JJ, Rubiera F. Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars. Chem Eng J. 2010;161:276–84. https://doi.org/10.1016/j.cej.2010.04.055.

    Article  CAS  Google Scholar 

  99. Qadi NMN, Hidayat A, Takahashi F, Yoshikawa K. Co-gasification kinetics of coal char and algae char under CO2 atmosphere. Biofuels. 2017;8:281–9. https://doi.org/10.1080/17597269.2016.1224292.

    Article  CAS  Google Scholar 

  100. Kajitani S, Zhang Y, Umemoto S, Ashizawa M, Hara S. Co-gasification reactivity of coal and woody biomass in high-temperature gasification. Energy Fuels. 2010;24:145–51. https://doi.org/10.1021/ef900526h.

    Article  CAS  Google Scholar 

  101. Zhang Z, Pang S, Levi T. Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renew Energy. 2017;101:356–63. https://doi.org/10.1016/j.renene.2016.08.070.

    Article  CAS  Google Scholar 

  102. Zuo HB, Geng WW, Zhang JL, Wang GW. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char. Int J Miner Metall Mater. 2015;22:363–70. https://doi.org/10.1007/s12613-015-1081-3.

    Article  CAS  Google Scholar 

  103. Wei J, Song X, Guo Q, Ding L, Yoshikawa K, Yu G. Reactivity, synergy, and kinetics analysis of CO2 co-pyrolysis/co-gasification of biomass after hydrothermal treatment and coal blends. Energy Fuels. 2020;34:294–303. https://doi.org/10.1021/acs.energyfuels.9b03721.

    Article  CAS  Google Scholar 

  104. Mosqueda A, Wei J, Medrano K, Gonzales H, Ding L, Yu G, Yoshikawa K. Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends. Appl Energy. 2019;250:92–7. https://doi.org/10.1016/j.apenergy.2019.05.008.

    Article  CAS  Google Scholar 

  105. Ren L, Wei R, Gao Y. Co-gasification reactivity of petcoke and coal at high temperature. Fuel. 2017;190:245–52. https://doi.org/10.1016/j.fuel.2016.11.020.

    Article  CAS  Google Scholar 

  106. Ren L, Wei R, Xin J. Co-gasification mechanism and kinetics of petcoke with lignite. Energy Fuels. 2020;34:1688–97. https://doi.org/10.1021/acs.energyfuels.9b04144.

    Article  CAS  Google Scholar 

  107. Yoon SJ, Choi YC, Lee SH, Lee JG. Thermogravimetric study of coal and petroleum coke for co-gasification. Korean J Chem Eng. 2007;24:512–7. https://doi.org/10.1007/s11814-007-0090-y.

    Article  CAS  Google Scholar 

  108. Huang S, Wu S, Wu Y, Liu Y, Gao J. Steam cogasification of petroleum coke and different rank coals for enhanced coke reactivity and hydrogen-rich gas production. Energy Fuels. 2014;28:3614–22. https://doi.org/10.1021/ef500188p.

    Article  CAS  Google Scholar 

  109. Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH. A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture. Korean J Chem Eng. 2017;34:3092–101. https://doi.org/10.1007/s11814-017-0214-y.

    Article  CAS  Google Scholar 

  110. Verma K, Gajera ZR, Sawarkar AN. Kinetics of gasification and co-gasification of petcoke and coal. J Inst Eng India Ser E. 2022;103:31–9. https://doi.org/10.1007/s40034-020-00178-x.

    Article  CAS  Google Scholar 

  111. Edreis EMA, Li X, Luo G, Sharshir SW, Yao H. Kinetic analyses and synergistic effects of CO2 co-gasification of low sulphur petroleum coke and biomass wastes. Bioresour Technol. 2018;267:54–62. https://doi.org/10.1016/j.biortech.2018.06.089.

    Article  CAS  Google Scholar 

  112. Yu J, Gong Y, Wei J, Ding L, Song X, Yu G. Promoting effect of biomass ash additives on high-temperature gasification of petroleum coke: reactivity and kinetic analysis. J Energy Inst. 2020;93:1364–72. https://doi.org/10.1016/j.joei.2019.12.006.

    Article  CAS  Google Scholar 

  113. Zou X, Ding L, Gong X. Study on the co-gasification reactivity and interaction mechanism of coal with different components of daily food waste. Energy Fuels. 2020;34:1728–36. https://doi.org/10.1021/acs.energyfuels.9b01679.

    Article  CAS  Google Scholar 

  114. Li Y, Yu M, Fan Y, Zhang W, Wang H, Li R, Chi Y. Study on gasification kinetics of refuse-derived fuel semi-cokes. Biofuels. 2017;8:253–60. https://doi.org/10.1080/17597269.2016.1221302.

    Article  CAS  Google Scholar 

  115. Wei J, Guo Q, Ding L, Yoshikawa K, Yu G. Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification. Appl Energy. 2017;206:1354–63. https://doi.org/10.1016/j.apenergy.2017.10.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director, CSIR-Central Institute of Mining and Fuel Research (CIMFR), Dhanbad, India, for allowing to publish the review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujan Saha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Saha, S., Sahu, G. et al. A comparative review on thermal behavior of feedstocks during gasification via thermogravimetric analyzer. J Therm Anal Calorim 148, 329–354 (2023). https://doi.org/10.1007/s10973-022-11757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11757-y

Keywords

Navigation