Skip to main content

Pyrolysis of Biomass for Biofuel Production

  • Chapter
  • First Online:
Green Fuels Technology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Due to the depletion of fossil fuel reserves and the environmental issues derived from their use, biomasses have been proposed and used as one of the renewable energy sources for the replacement of fossil fuels. Biomass can be converted into energy by means of thermochemical conversion processes. The pyrolysis process is the thermal degradation of biomass under an inert atmosphere leading to three different products: solid char, liquid biofuel, and fuel gas. This thermochemical process involves complex and multiple reactions. In this chapter, the biomass pyrolysis is studied using one of the main analytical tools to evaluate the potential of biomass: the thermogravimetric analysis (TGA) coupled with mass spectrometry (MS). This tool lets to observe the four main stages of pyrolysis process: dehydration, devolatilization, char formation, and inorganic matter decomposition. Gases evolved were studied by means of mass spectrometry, and the solid fuel (char) derived from pyrolysis was characterized using different techniques, such as elemental analysis, TGA, bomb calorimetry, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). This chapter also discusses the kinetics of pyrolysis and the way to evaluate the kinetic parameters which are necessary for industrially scaling up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TGA:

Thermogravimetric Analysis

MS:

Mass Spectrometry

ICP-AES:

Inductively Coupled Plasma-Atomic Emission Spectroscopy

LSM:

Livestock Manure

SWOT:

Strengths, Weaknesses, Opportunities and Threats

DTG:

Derivative Thermogravimetric

HHV:

High Heating Value

T:

Temperature

P:

Pressure

α:

Extent of conversion

A :

Preexponential factor

E a :

Activation energy

R :

Universal gas constant

FWO:

Flynn-Wall-Ozawa

KAS:

Kissinger-Akahira-Sunose

References

  • Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory: Elsevier science

    Google Scholar 

  • BP (2013) BP statistical review of world energy, June 2014. Available online at: bp.com/statisticalreview

    Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  Google Scholar 

  • Cao JP, Huang X, Zhao XY, Wei XY, Takarada T (2015) Nitrogen transformation during gasification of livestock compost over transition metal and Ca-based catalysts. Fuel 140:477–483

    Article  Google Scholar 

  • Fernandez-Lopez M, Puig-Gamero M, Lopez-Gonzalez D, Avalos-Ramirez A, Valverde J, Sanchez-Silva L (2015) Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes. Bioresour Technol 182:184–192

    Article  Google Scholar 

  • Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polymer Sci Part C: Polymer Symp 6(1):183–195

    Google Scholar 

  • Guerrero MRB, Marques da Silva Paula M, Zaragoza MM, Gutiérrez JS, Velderrain VG, Ortiz AL et al (2014) Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int J Hydrogen Energy 39(29):16619–16627

    Google Scholar 

  • Hammes K, Smernik RJ, Skjemstad JO, Schmidt MWI (2008) Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl Geochem 23(8):2113–2122

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  • López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2013) Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol 143:562–574

    Article  Google Scholar 

  • López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis. Energy. 73:33–43

    Article  Google Scholar 

  • López-González D, Avalos-Ramirez A, Giroir-Fendler A, Godbout S, Fernandez-Lopez M, Sanchez-Silva L et al (2015) Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry. Energy

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  Google Scholar 

  • Mura P (2015) Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal 113:226–238

    Article  Google Scholar 

  • Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energ. 35(8):1624–1631

    Article  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust. 37(1):52–68

    Article  MathSciNet  Google Scholar 

  • Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172

    Article  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev. 50:1081–1096

    Article  Google Scholar 

  • Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX (2009) Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88(6):1024–1030

    Article  Google Scholar 

  • Shen D, Hu J, Xiao R, Zhang H, Li S, Gu S (2013) Online evolved gas analysis by thermogravimetric-mass spectroscopy for thermal decomposition of biomass and its components under different atmospheres: Part I. Lignin Bioresour Technol 130:449–456

    Article  Google Scholar 

  • Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1–2):163–176

    Article  Google Scholar 

  • Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19

    Article  Google Scholar 

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91(1):1–33

    Article  Google Scholar 

  • Wnetrzak R, Kwapinski W, Peters K, Sommer SG, Jensen LS, Leahy JJ (2013) The influence of the pig manure separation system on the energy production potentials. Bioresour Technol 136:502–508

    Article  Google Scholar 

  • Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J Anal Appl Pyrol 78(2):265–271

    Article  Google Scholar 

  • Wu H, Hanna MA, Jones DD (2012) Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manage Res J Int Solid Wastes Public Clean Assoc ISWA 30(10):1066–1071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Sanchez-Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandez-Lopez, M., Avalos-Ramirez, A., Valverde, J.L., Sanchez-Silva, L. (2016). Pyrolysis of Biomass for Biofuel Production. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics