Skip to main content
Log in

Investigation of the thermal stability of the antihypertensive drug nebivolol under different conditions: Experimental and computational analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of the third-generation beta-blocker nebivolol (NEB) was investigated using thermogravimetric analysis (TG) under isothermal and non-isothermal environments, revealing important steadiness performance for the dispensation in the pharma manufacturing, expecting shelf life, and appropriate storing features. Kinetic analysis was carried out using Kissinger–Akahira–Sunose, Friedman, Flynn–Wall–Ozawa, and Starink methods. The analysis reveals that the activation energy estimated from the disintegration reactions via different techniques is unswerving with each other. Furthermore, the thermodynamic constraints (ΔH, ΔS, and ΔG) of the decomposition reaction were also estimated. A correlation between the mass spectrometry and thermal behavior of NEB has also been investigated. The study provides valuable stability data, expected shelf life, and optimal storing conditions that would help drug design and manufacturing. Density functional theory was also employed to study the possible thermodynamic dissociation channels of NEB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vedanthan R, Ray M, Fuster V, Magenheim E. Hypertension Treatment Rates and Health Care Worker Density: An Analysis of Worldwide Data. Hypertension. 2019;73(3):594–601.

    Article  CAS  Google Scholar 

  2. Ibrahim DM, Kakarougkas A, Allam NK. Recent Advances on Electrospun Scaffolds as Matrices for Tissue-Engineered Heart Valves. Mater Today Chem. 2017;5:11–23.

    Article  Google Scholar 

  3. Kamp O, Sieswerda GT, Visser CA. Comparison of effects on systolic and diastolic left ventricular function of nebivolol versus atenolol in patients with uncomplicated essential hypertension. Am J Cardiol. 2003;92(3):344–8.

    Article  CAS  Google Scholar 

  4. Lindamood C, Ortiz S, Shaw A, Rackley R, Gorski JC. Effects of commonly administered agents and genetics on nebivolol pharmacokinetics: drug-drug interaction studies. J Clin Pharmacol. 2011;51(4):575–85.

    Article  CAS  Google Scholar 

  5. Önal A. Spectrophotometric and spectrofluorimetric determination of some drugs containing secondary amino group in bulk drug and dosage forms via derivatization with 7-chloro-4-nitrobenzofurazon. Quim Nova. 2011;34(4):677–82.

    Article  Google Scholar 

  6. Mishra P, Shah K, Gupta A. Spectrophotometric methods for simultaneous estimation of nebivolol hydrochloride and amlodipine besylate in tablets. Int J Pharm Pharm Sci. 2009;1(2):55–61.

    CAS  Google Scholar 

  7. Madhavi C, Siddartha B, Parthiban C. Simultaneous estimation and validation of nebivolol and valsartan in tablet dosage form by RP-HPLC. Int J Pharm Pharm Sci. 2014;6:1–5.

    Google Scholar 

  8. Dhandapani B, Thirumoorthy N, Prakash DJ. Development and validation for the simultaneous quantification of nebivolol hydrochloride and hydrochlorothiazide by UV spectroscopy, RP-HPLC and HPTLC in tablets. J Chem. 2010;7(2):341–8.

    CAS  Google Scholar 

  9. van Nuijs AL, Tarcomnicu I, Simons W, Bervoets L, Blust R, Jorens PG, et al. Optimization and validation of a hydrophilic interaction liquid chromatography–tandem mass spectrometry method for the determination of 13 top-prescribed pharmaceuticals in influent wastewater. Anal Bioanal Chem. 2010;398(5):2211–22.

    Article  Google Scholar 

  10. Selvan PS, Gowda KV, Mandal U, Solomon WS, Pal T. Simultaneous determination of fixed dose combination of nebivolol and valsartan in human plasma by liquid chromatographic-tandem mass spectrometry and its application to pharmacokinetic study. J Chromatogr B. 2007;858(1–2):143–50.

    Article  CAS  Google Scholar 

  11. Mohamed MA, Atty SA, Banks CE. Thermal decomposition kinetics of the antiparkinson drug “entacapone” under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;130(3):2359–67. https://doi.org/10.1007/s10973-017-6664-y.

    Article  CAS  Google Scholar 

  12. Tiţa B, Marian E, Fuliaş A, Jurca T, Tiţa D. Thermal stability of piroxicam. J Therm Anal Calorim. 2013;112(1):367–74. https://doi.org/10.1007/s10973-013-2979-5.

    Article  CAS  Google Scholar 

  13. Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;127(2):1751–6. https://doi.org/10.1007/s10973-016-5551-2.

    Article  CAS  Google Scholar 

  14. Kobelnik M, Cassimiro DL, Ribeiro CA, Capela JM, Dias DS, Crespi MS. Preparation and thermal study of Mg-diclofenac compound in solid state. J Therm Anal Calorim. 2011;108(1):213–8.

    Article  Google Scholar 

  15. Salama NN, Mohammad MA, Fattah TA. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2015;120(1):953–8. https://doi.org/10.1007/s10973-015-4419-1.

    Article  CAS  Google Scholar 

  16. Mujeeb VA, Muraleedharan K, Kannan M, Devi TG. The effect of particle size on the thermal decomposition kinetics of potassium bromate. J Therm Anal Calorim. 2012;108(3):1171–82.

    Article  Google Scholar 

  17. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Aa B, et al. Computational aspects of kinetic analysis: Part A: the ICTAC kinetics project-data, methods and results. Thermochimica Acta. 2000;355(1–2):125–43.

    Article  CAS  Google Scholar 

  18. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  19. Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, et al. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2018;131(2):1881–8.

    Article  CAS  Google Scholar 

  20. Pandit AP, Patel SA, Bhanushali VP, Kulkarni VS, Kakad VD. Nebivolol-loaded microsponge gel for healing of diabetic wound. AAPS PharmSciTech. 2017;18(3):846–54. https://doi.org/10.1208/s12249-016-0574-3.

    Article  CAS  PubMed  Google Scholar 

  21. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci, Part C: Polym Lett. 1969;7(1):41–6.

    CAS  Google Scholar 

  22. Friedman HL, editor. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia; 1964: Wiley Online Library.

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  27. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  28. Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76.

    Article  CAS  Google Scholar 

  29. Vyazovkin S. Computational aspects of kinetic analysis: Part C. The ICTAC kinetics project — the light at the end of the tunnel? Thermochimica Acta. 2000;355(1–2):155–63. https://doi.org/10.1016/S0040-6031(00)00445-7.

    Article  CAS  Google Scholar 

  30. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19(1):45–60.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  32. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Amsterdam: Elsevier; 1980.

    Google Scholar 

  33. Brown M. Thermal Decomposition of Ionic Solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  34. Ferreira B, Araujo B, Sebastião R, Yoshida M, Mussel W, Fialho S, et al. Kinetic study of anti-HIV drugs by thermal decomposition analysis. J Therm Anal Calorim. 2017;127(1):577–85.

    Article  CAS  Google Scholar 

  35. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  36. Gai C, Dong Y, Zhang T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Biores Technol. 2013;127:298–305. https://doi.org/10.1016/j.biortech.2012.09.089.

    Article  CAS  Google Scholar 

  37. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  39. Galwey AK. Magnitudes of Arrhenius parameters for decomposition reactions of solids. Thermochim Acta. 1994;242:259–64.

    Article  CAS  Google Scholar 

  40. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72(2):597–604.

    Article  CAS  Google Scholar 

  41. Vlase T, Jurca G, Doca N. Non-isothermal kinetics by decomposition of some catalyst precursors. Thermochim Acta. 2001;379(1):65–9.

    Article  CAS  Google Scholar 

  42. Marian E, Tiţa B, Jurca T, Fuliaş A, Vicaş L, Tiţa D. Thermal behaviour of erythromycin-active substance and tablets. J Therm Anal Calorim. 2013;111(2):1025–31.

    Article  CAS  Google Scholar 

  43. Krabbendam-LaHaye E, De Klerk W, Krämer R. The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80(2):495–501.

    Article  CAS  Google Scholar 

  44. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 16. Wallingford, CT: Gaussian, Inc.; 2016.

    Google Scholar 

  45. Allam NK. Thermodynamic and quantum chemistry characterization of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solutions. Appl Surf Sci. 2007;253(10):4570–7.

    Article  CAS  Google Scholar 

  46. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations Potentials for main group elements Na to Bi. J Chem Phys. 1985;82(1):284–98. https://doi.org/10.1063/1.448800.

    Article  CAS  Google Scholar 

  47. Dunning TH, Hay PJ. Gaussian Basis Sets for Molecular Calculations. In: Schaefer HF, editor. Methods of electronic structure theory. Boston: Springer; 1977. p. 1–27.

    Google Scholar 

  48. Gonzalez C, Schlegel HB. An improved algorithm for reaction path following. J Chem Phys. 1989;90(4):2154–61. https://doi.org/10.1063/1.456010.

    Article  CAS  Google Scholar 

  49. Gonzalez C, Schlegel HB. Reaction path following in mass-weighted internal coordinates. J Phys Chem. 1990;94(14):5523–7. https://doi.org/10.1021/j100377a021.

    Article  CAS  Google Scholar 

  50. El-Nahas AM, Khedr GE, Emam SM. Thermodynamic and kinetic stability of magnesium dication solvated by tetramethylethylenediamine. Comput Theor Chem. 2011;978(1):104–9. https://doi.org/10.1016/j.comptc.2011.09.042.

    Article  CAS  Google Scholar 

  51. Badran I, Nassar NN, Marei NN, Hassan A. Theoretical and thermogravimetric study on the thermo-oxidative decomposition of Quinolin-65 as an asphaltene model molecule. RSC Adv. 2016;6(59):54418–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mona A. Mohamed or Nageh K. Allam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asran, A.M., Mohamed, M.A., Khedr, G.E. et al. Investigation of the thermal stability of the antihypertensive drug nebivolol under different conditions: Experimental and computational analysis. J Therm Anal Calorim 147, 5779–5786 (2022). https://doi.org/10.1007/s10973-021-10893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10893-1

Keywords

Navigation