Skip to main content
Log in

Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cinnarizine (CIN) is an anti-histaminic drug which is mainly used for the control of vomiting due to motion sickness. The thermal behavior of CIN was investigated using thermogravimetry/derivative thermogravimetry and differential thermal analysis. The kinetic parameters were evaluated by isothermal and non-isothermal conditions including Ozawa’s conventional method, Ozawa–Flynn–Wall and Friedman isoconversional methods. The kinetic parameters were determined using the thermogravimetric curves of the decomposition process. The activation energy values obtained were 88.38 and 90.12 kJ mol−1 for the isothermal and non-isothermal conditions, respectively, with the conventional method. The activation energy values obtained by isoconversional method were practically equal; hence, the reaction involves a single step. Finally, the values of entropy (∆S), enthalpy (∆H), and Gibbs free energy change (∆G) of decomposition reaction were calculated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sweetman SC. Martindale: the complete drug references. 36th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  2. Woestenborghs R, Michielsen L, Lorreyne W, Heykants J. Sensitive gas chromatographic method for the determination of cinnarizine and flunarizine in biological samples. J Chromatogr B. 1982;232(1):85–91.

    Article  CAS  Google Scholar 

  3. Argekar A, Shah S. Simultaneous determination of cinnarizine and domepiridone maleate from tablet dosage form by reverse phase ion pair high performance liquid chromatography. J Pharm Biomed Anal. 1999;19(6):813–7.

    Article  CAS  Google Scholar 

  4. Hundt H, Brown L, Clark E. Determination of cinnarizine in plasma by high-performance liquid chromatography. J Chromatogr B. 1980;183(3):378–82.

    Article  CAS  Google Scholar 

  5. Metwally FH, Elzeany B, Darwish H. New methods for determination of cinnarizine in mixture with piracetam by spectrodensitometry, spectrophotometry, and liquid chromatography. J AOAC Int. 2005;88(6):1666–76.

    CAS  Google Scholar 

  6. Van De Steene JC, Lambert WE. Validation of a solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometric method for the determination of nine basic pharmaceuticals in wastewater and surface water samples. J Chromatogr A. 2008;1182(2):153–60.

    Article  Google Scholar 

  7. Abdine H, Belal F, Zoman N. Simple spectrophotometric determination of cinnarizine in its dosage forms. Il Farmaco. 2002;57(4):267–71.

    Article  CAS  Google Scholar 

  8. Devagondanahalli MH, Shaikh SMT, Jaldappagari S, Ramanaboyina SK, Kasalanti H. Determination of cinnarizine in pure and pharmaceutical formulations. J Chin Chem Soc. 2007;54(1):63–8.

    Article  CAS  Google Scholar 

  9. Neagu A, Constantinescu I, Nedelcu A, Florea M. Spectrophotometric determination of some basic drugs in bulk and dosage forms using azo dyes. Farmacia. 2008;56(1):42–9.

    CAS  Google Scholar 

  10. Walash M, Belal F, El-Enany N, Abdelal A. Second-derivative synchronous fluorometric method for the simultaneous determination of cinnarizine and domperidone in pharmaceutical preparations. Application to biological fluids. J Fluoresc. 2008;18(1):61–74.

    Article  CAS  Google Scholar 

  11. Hassan SS, Abdel-Aziz RM, Abbas AB. Potentiometric membrane sensors for the selective determination of cinnarizine in pharmaceutical preparations. Anal Chim Acta. 1996;321(1):47–52.

    Article  CAS  Google Scholar 

  12. Hegde RN, Hosamani RR, Nandibewoor ST. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf B. 2009;72(2):259–65.

    Article  CAS  Google Scholar 

  13. El-Sayed G, Yasin S, El Badawy A. Voltammetric behavior and determination of cinnarizine in pharmaceutical formulations and serum. Anal Lett. 2008;41(17):3021–33.

    Article  CAS  Google Scholar 

  14. Townshend A, Youngvises N, Wheatley RA, Liawruangrath S. Flow-injection determination of cinnarizine using surfactant-enhanced permanganate chemiluminesence. Anal Chim Acta. 2003;499(1):223–33.

    Article  CAS  Google Scholar 

  15. Abdelal A, Kitagawa S, Ohtani H, El-Enany N, Belal F, Walash M. Method development and validation for the simultaneous determination of cinnarizine and co-formulated drugs in pharmaceutical preparations by capillary electrophoresis. J Pharm Biomed Anal. 2008;46(3):491–7.

    Article  CAS  Google Scholar 

  16. Gaisford S, Buanz ABM. Pharmaceutical physical form characterisation with fast (>200 oC min−1) DSC heating rates. J Therm Anal Calorim. 2011;106(1):221–6.

    Article  CAS  Google Scholar 

  17. Neto HS, Novák C, Matos J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97(1):367–74.

    Article  Google Scholar 

  18. Maximiano FP, Novack KM, Bahia MT, de Sá-Barreto LL, da Cunha-Filho MSS. Polymorphic screen and drug-excipient compatibility studies of the antichagasic benznidazole. J Therm Anal Calorim. 2011;106(3):819–24.

    Article  CAS  Google Scholar 

  19. Salama NN, Mohammad MA, Fattah TA. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2015;120(1):953–8.

    Article  CAS  Google Scholar 

  20. Brown ME, Glass BD. Decomposition of solids accompanied by melting—Bawn kinetics. Int J Pharm. 2003;254(2):255–61.

    Article  CAS  Google Scholar 

  21. Rodomonte A, Antoniella E, Bertocchi P, Gaudiano MC, Manna L, Bartolomei M. Different crystal morphologies arising from different preparation methods of a same polymorphic form may result in different properties of the final materials: the case of diclofenac sodium trihydrate. J Pharm Biomed Anal. 2008;48(2):477–81.

    Article  CAS  Google Scholar 

  22. Salvio Neto H, Matos JR. Compatibility and decomposition kinetics studies of prednicarbate alone and associated with glyceryl stearate. J Therm Anal Calorim. 2011;103(1):393–9.

    Article  CAS  Google Scholar 

  23. Burnham L, Dollimore D, Alexander KS. Kinetic study of the drug acetazolamide using thermogravimetry. Thermochim Acta. 2002;392:127–33.

    Article  Google Scholar 

  24. Felix FS, da Silva LC, Angnes L, Matos J. Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2009;95(3):877–80.

    Article  CAS  Google Scholar 

  25. Oliveira MA, Yoshida MI, Gomes ECL, Mussel WN, Vianna-Soares CD, Pianetti GA. Thermal analysis applied to simvastatin characterization in pharmaceutical formulations. Quim Nova. 2010;33(8):1653–7.

    Article  Google Scholar 

  26. Sovizi M. Thermal behavior of drugs: investigation on decomposition kinetic of naproxen and celecoxib. J Therm Anal Calorim. 2010;102(1):285–9.

    Article  CAS  Google Scholar 

  27. Kalava BS, Demirel M, Yazan Y. Physicochemical characterization and dissolution properties of cinnarizine solid dispersions. Turkish J Pharm Sci. 2005;2(2):51–62.

    CAS  Google Scholar 

  28. The European Pharmacopoeia VII. Strasbourg: European Directorate for the Quality of Medicines and Heathcare; 2005.

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  30. Vyazovkin S. Thermal analysis. Anal Chem. 2002;74(12):2749–62.

    Article  CAS  Google Scholar 

  31. Muraleedharan K, Kannan M, Devi TG. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103(3):943–55.

    Article  CAS  Google Scholar 

  32. Mothé CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113(2):497–505.

    Article  Google Scholar 

  33. Málek J, Koga N, Pérez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;113(3):1437–46.

    Article  Google Scholar 

  34. Fandaruff C, Araya-Sibaja A, Pereira R, Hoffmeister C, Rocha H, Silva M. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2014;115(3):2351–6.

    Article  CAS  Google Scholar 

  35. Cides LC, Araújo AA, Santos-Filho M, Matos J. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84(2):441–5.

    Article  CAS  Google Scholar 

  36. Han Y, Li T, Saito K. A modified Ortega method to evaluate the activation energies of solid state reactions. J Therm Anal Calorim. 2013;112(2):683–7.

    Article  CAS  Google Scholar 

  37. Anthony CM, Osselton MD, Widdop B. Clark’s Analysis of Drugs and Poisons. 3rd ed. London: Pharmaceutical Press; 2004.

    Google Scholar 

  38. Persson LC, Porter CJH, Charman WN, Bergström CAS. Computational prediction of drug solubility in lipid based formulation excipients. Pharm Res. 2013;30:3225–37.

    Article  CAS  Google Scholar 

  39. Tita D, Fulias A, Tita B. Thermal stability of ketoprofen. J Therm Anal Calorim. 2013;111(3):1979–85.

    Article  CAS  Google Scholar 

  40. Fulias A, Vlase G, Grigorie C, Ledet I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine. J Therm Anal Calorim. 2013;113:265–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali K. Attia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.A., Attia, A.K. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim 127, 1751–1756 (2017). https://doi.org/10.1007/s10973-016-5551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5551-2

Keywords

Navigation