Skip to main content
Log in

Calorimetric study of smectic x* and validation of dynamic memory in ferroelectric binary complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Calorimetric studies of ferroelectric liquid crystalline binary mesogens obtained by mixing precursors namely Acid-Dextro Tartaric (ADT) with either benzoic acid-heptyloxy (7BAS) or benzoic acid-octyloxy (8BAE) abbreviated as ADT + 7BAS and ADT + 8BAE, respectively, in predetermined molar ratios to develop 10 binary mesogens. ADT + 8BAE and ADT + 7BAS are treated as X and Y, and 10 proportions of the binary complexes studied are X = 95: Y = 5, X = 90: Y = 10, X = 80: Y = 20, X = 70: Y = 30, X = 60: Y = 40, X = 50: Y = 50, X = 40: Y = 60, X = 30: Y = 70, X = 20: Y = 80 and X = 10:Y = 90, respectively. The objective of this research was to investigate the enhancement in the growth of sm X* phase thermal width as the molar ratio of Y is altered progressively in the binary complexes. In the above binaries, the phases namely cholesteric, smectic (C*, X* and G*) are confirmed by corresponding optical textural studies. Phase diagram is constructed with polarizing optical microscopic study coupled with DSC phase analysis. Dielectric hysteresis with applied field yielded information about dynamic memory in ferroelectric binary complexes. Specific heat across various phase transitions in selected mesogens is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Demus D, Goodby JW, Gray GW, Spiess HW, Vill V. Handbook of liquid crystals low molecular weight liquid crystals II. New York: Wiley; 2011.

    Google Scholar 

  2. Tressaud A, Poeppelmeier KR. Photonic and electronic properties of fluoride materials: progress in fluorine science series. Amsterdam: Elsevier; 2016.

    Google Scholar 

  3. Raynes EP, Waters CM. Supertwisted nematic liquid crystal displays. Displays. 1987;8(2):59–63. https://doi.org/10.1016/0141-9382(87)90038-2.

    Article  CAS  Google Scholar 

  4. Outram B. Liquid crystals. IOP Publish. 2018. https://doi.org/10.1088/978-0-7503-1362-9.

    Article  Google Scholar 

  5. Kumar U, Kato T, Frechet JMJ. Use of intermolecular hydrogen bonding for the induction of liquid crystallinity in the side chain of polysiloxanes. J Am Chem Soc. 1992;114(17):6630–9. https://doi.org/10.1021/ja00043a004.

    Article  CAS  Google Scholar 

  6. Kihara H, Kato T, Uryu T, Frechet JMJ. Supramolecular liquid-crystalline networks built by self-assembly of multifunctional hydrogen-bonding molecules. Chem Mater. 1996;8(4):961–8.

    Article  CAS  Google Scholar 

  7. Kato T, et al. Hydrogen-bonded liquid crystals. Novel mesogens incorporating nonmesogenic bipyridyl compounds through complexation between hydrogen-bond donor and acceptor moieties. Chem Mater. 1993;5(8):1094–100.

    Article  CAS  Google Scholar 

  8. Paleos CM, Tsiourvas D. Thermotropic liquid crystals formed by intermolecular hydrogen bonding interactions. Angew Chemie Int Ed English. 1995;34(16):1696–711.

    Article  CAS  Google Scholar 

  9. Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;28(8):1127–61. https://doi.org/10.1080/02678290110039516.

    Article  CAS  Google Scholar 

  10. Paleos CM, Tsiourvas D. Molecular Recognition of Organized Assemblies via hydrogen bonding in aqueous media. Adv Mater. 1997;9(9):695–710. https://doi.org/10.1002/adma.19970090904.

    Article  CAS  Google Scholar 

  11. Felekis T, Tziveleka L, Tsiourvas D, Paleos CM. Liquid crystals derived from hydrogen-bonded supramolecular complexes of pyridinylated hyperbranched polyglycerol and cholesterol-based carboxylic acids. Macromolecules. 2005;38(5):1705–10. https://doi.org/10.1021/ma047958p.

    Article  CAS  Google Scholar 

  12. Fouzai M, Hamdi R, Ghrab S, Soltani T, Ionescu A, Othman T. Properties of binary mixtures derived from hydrogen bonded liquid crystals. J Mol Liq. 2018;249:1279–86. https://doi.org/10.1016/j.molliq.2017.11.128.

    Article  CAS  Google Scholar 

  13. Rohini P, Pongali Sathya Prabu N, Madhu Mohan MLN. Studies on thermotropic hydrogen bonded binary mixtures. Mol Cryst Liq Cryst. 2019;690(1):23–42. https://doi.org/10.1080/15421406.2019.1680160.

    Article  CAS  Google Scholar 

  14. Saccone M, Pfletscher M, Dautzenberg E, Dong RY, Michal CA, Giese M. Hydrogen-bonded liquid crystals with broad-range blue phases. J Mater Chem C. 2019;7(11):3150–3. https://doi.org/10.1039/C8TC06428H.

    Article  CAS  Google Scholar 

  15. Saccone M, et al. Improving the mesomorphic behaviour of supramolecular liquid crystals by resonance-assisted hydrogen bonding. J Mater Chem C. 2019;7(28):8643–8. https://doi.org/10.1039/C9TC02787D.

    Article  CAS  Google Scholar 

  16. Kato T, Wilson PG, Fujishima A, Fréchet JMJ. Hydrogen-bonded liquid crystals. A novel mesogen incorporating nonmesogenic 4, 4′-bipyridine through selective recognition between hydrogen bonding donor and acceptor. Chem Lett. 1990;19(11):2003–6.

    Article  Google Scholar 

  17. Pfletscher M, Hölscher S, Wölper C, Mezger M, Giese M. Structure–property relationships in hydrogen-bonded liquid crystals. Chem Mater. 2017;29(19):8462–71. https://doi.org/10.1021/acs.chemmater.7b03182.

    Article  CAS  Google Scholar 

  18. “No Title.” https://www.merckgroup.com/en/brands/pm/licristal.html.

  19. Serrano LA, Fornerod MJ, Yang Y, Gaisford S, Stellacci F, Guldin S. Phase behaviour and applications of a binary liquid mixture of methanol and a thermotropic liquid crystal. Soft Matter. 2018;14(22):4615–20. https://doi.org/10.1039/C8SM00327K.

    Article  CAS  PubMed  Google Scholar 

  20. Riaz A. Thermal analysis of an Eyring-Powell fluid peristaltic transport in a rectangular duct with mass transfer. J Therm Anal Calorim. 2021;143(3):2329–41. https://doi.org/10.1007/s10973-020-09723-7.

    Article  CAS  Google Scholar 

  21. Sied MB, et al. Liquid crystal binary mixtures of 8OCB + 10OCB. evidence for a smectic A-to-nematic tricritical point. J Phys Chem B. Sep. 2005;109(34):16284–9. https://doi.org/10.1021/jp051957x.

    Article  CAS  PubMed  Google Scholar 

  22. P Palffy Muhoray, DA Dunmur, WH Miller, DA Balzarini, 1984 Orientational Order in Binary Mixtures of Nematic Liquid Crystals. In: Liquid Crystals and Ordered Fluids. Springer, Boston.

  23. Hagar M, Ahmed HA, Alhaddad OA. New azobenzene-based natural fatty acid liquid crystals with low melting point: synthesis, DFT calculations and binary mixtures. Liq Cryst. 2019;46(15):2223–34. https://doi.org/10.1080/02678292.2019.1616841.

    Article  CAS  Google Scholar 

  24. Chakraborty S, Chakraborty A, Das MK, Weissflog W. Dielectric investigation on some binary mixtures of hockey-stick-shaped liquid crystal and octyloxy-cyanobiphenyl. Phase Transit. 2019;92(9):806–15. https://doi.org/10.1080/01411594.2019.1642476.

    Article  CAS  Google Scholar 

  25. Griffin AC, Buckley NW, Johnson JF, Bertolini G. Effect of molecular structure on mesomorphism. 13 1 calorimetry of smectic a phase diagrams exhibiting enhancement. Mol Cryst Liq Cryst. 1981;73(1–2):35–45. https://doi.org/10.1080/00268948108076260.

    Article  CAS  Google Scholar 

  26. Huang T-M, McCreary K, Garg S, Kyu T. Induced smectic phases in phase diagrams of binary nematic liquid crystal mixtures. J Chem Phys. 2011;134(12):124508. https://doi.org/10.1063/1.3567100.

    Article  CAS  PubMed  Google Scholar 

  27. de Jeu WH, Longa L, Demus D. Simple model of induced smectic phases in binary mixtures of liquid crystals. J Chem Phys. 1986;84(11):6410–20. https://doi.org/10.1063/1.450735.

    Article  Google Scholar 

  28. Sridevi B, Chalapathi PV, Srinivasulu M, Pisipati VGKM, Potukuchi DM. Influence of hydrogen bonding on phase abundance in ferroelectric liquid crystals. Liq Cryst. 2004;31(3):303–10. https://doi.org/10.1080/02678290410001648705.

    Article  CAS  Google Scholar 

  29. Cienega-Cacerez O, García-Alcántara C, Moreno-Razo JA, Díaz-Herrera E, Sambriski EJ. Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals. Soft Matter. 2016;12(4):1295–312. https://doi.org/10.1039/C5SM01959A.

    Article  CAS  PubMed  Google Scholar 

  30. Tariq HA, Anwar M, Ali HM, Ahmed J. Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study. J Therm Anal Calorim. 2021;143(3):2011–27. https://doi.org/10.1007/s10973-020-09617-8.

    Article  CAS  Google Scholar 

  31. Lund LA, Omar Z, Raza J, Khan I. Magnetohydrodynamic flow of Cu–Fe3O4/H2O hybrid nanofluid with effect of viscous dissipation: dual similarity solutions. J Therm Anal Calorim. 2021;143(2):915–27. https://doi.org/10.1007/s10973-020-09602-1.

    Article  CAS  Google Scholar 

  32. Ansarypur G, Bayareh M, Jahangiri A. Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10554-3.

    Article  Google Scholar 

  33. Ren Y, et al. Microcalorimetric in situ synthesis and the solid-state reaction enthalpy change for 1D CoII coordination polymer. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10617-5.

    Article  Google Scholar 

  34. Vijayakumar VN, Madhu Mohan MLN. Study of self assembly systems formed by malic acid and Alkyloxy Benzoic Acids. Zeitschrift für Naturforsch A. 2010;65(12):1156–64. https://doi.org/10.1515/zna-2010-1223.

    Article  CAS  Google Scholar 

  35. Sangameswari G, Sathya Prabu NP, Madhu Mohan MLN. Binary mixtures of hydrogen-bonded ferroelectric liquid crystals: thermal span enhancement in smectic X* phase. Zeitschrift für Naturforsch A. 2015;70(9):757–74. https://doi.org/10.1515/zna-2015-0164.

    Article  CAS  Google Scholar 

  36. Vijayakumar VN, Madhu Mohan MLN. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals. Phase Transit. 2012;85(1):113–30. https://doi.org/10.1080/01411594.2011.594371.

    Article  CAS  Google Scholar 

  37. Kavitha C, Madhu Mohan MLN. Design, synthesis and characterization of a linear hydrogen bonded homologous series exhibiting reentrant smectic C ordering. J Phys Chem Solids. 2012;73(10):1203–12. https://doi.org/10.1016/j.jpcs.2012.05.013.

    Article  CAS  Google Scholar 

  38. Kavitha C, Prabu NPS, Mohan MLNM. Design, synthesis and characterization of a linear hydrogen bonded homologous series. Phys B Condens Matter. 2012;407(5):859–67.

    Article  CAS  Google Scholar 

  39. Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Study and characterization of the smectic X* phase in binary mixtures of thermotropic double hydrogen bonded ferroelectric liquid crystals. Phase Transit. 2015;88(9):907–28. https://doi.org/10.1080/01411594.2015.1039011.

    Article  CAS  Google Scholar 

  40. Prabu NPS, Mohan MLNM. Dielectric and optical studies in smectic C of a novel hydrogen bonded liquid crystal homologous series. Mol Cryst Liq Cryst. 2012;562(1):177–90. https://doi.org/10.1080/15421406.2012.687673.

    Article  CAS  Google Scholar 

  41. Kavitha C, Prabu NPS, Madhu Mohan MLN. Thermal analysis of supramolecular hydrogen-bonded liquid crystals formed by nonyloxy and alkyl benzoic acids. Mol Cryst Liq Cryst. 2013;574(1):96–113. https://doi.org/10.1080/15421406.2012.762500.

    Article  CAS  Google Scholar 

  42. Pongali Sathya Prabu N, Madhu Mohan MLN. Characterization of a new smectic ordering in supramolecular hydrogen bonded liquid crystals by X-ray, optical and dielectric studies. J Mol Liq. 2013;182:79–90. https://doi.org/10.1016/j.molliq.2013.03.014.

    Article  CAS  Google Scholar 

  43. Pongali Sathya Prabu N, Madhu Mohan MLN. Spontaneous polarization analysis in hydrogen bonded ferroelectric liquid crystals. Phase Transit. 2014;87(5):491–508. https://doi.org/10.1080/01411594.2013.850168.

    Article  CAS  Google Scholar 

  44. Chandrasekar G, Pongali Sathya Prabu N, Mohan MLNM. Optical and thermal characterization of double hydrogen bonded liquid crystals: Binary mixtures. Ferroelectrics. 2018;524(1):102–37. https://doi.org/10.1080/00150193.2018.1432744.

    Article  CAS  Google Scholar 

  45. Kishor MH, Madhu Mohan MLN. “Investigations on smectic X* and re-entrant smectic C* orderings in hydrogen bonded ferroelectric liquid crystals. J Mol Liq. 2019;273:504–24. https://doi.org/10.1016/j.molliq.2018.10.061.

    Article  CAS  Google Scholar 

  46. Rajanandkumar R, Prabu NPS, Mohan MLNM. Analysis of optical and thermal properties of double hydrogen bonded liquid crystal binary mixtures. Mol Cryst Liq Cryst. Jul. 2017;652(1):111–25. https://doi.org/10.1080/15421406.2017.1358011.

    Article  CAS  Google Scholar 

  47. GW Gray, JWG Goodby and JWC Goodby, 1984 Smectic Liquid Crystals: Textures and Structures. L Hill.

  48. Lassègues J-C, Grondin J, Cavagnat D, Johansson P. New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids. J Phys Chem A. 2009;113(23):6419–21. https://doi.org/10.1021/jp903160r.

    Article  CAS  PubMed  Google Scholar 

  49. Martínez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–37. https://doi.org/10.1016/j.molstruc.2015.07.062.

    Article  CAS  Google Scholar 

  50. Martínez-Felipe A, Cook AG, Wallage MJ, Imrie CT. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature Fourier transform infrared spectroscopic study. Phase Transit. 2014;87(12):1191–210. https://doi.org/10.1080/01411594.2014.900556.

    Article  CAS  Google Scholar 

  51. Azima A, Brown CW, Mitra SS. Temperature dependence of the i.r. spectra of liquid crystalline p-heptoxybenzoic acid and p-octoxybenzoic acid. Spectrochim Acta Part A Mol Spectrosc. 1975;31(9–10):1475–9. https://doi.org/10.1016/0584-8539(75)80204-2.

    Article  Google Scholar 

  52. Lee JY, Painter PC, Coleman MM. Hydrogen bonding in polymer blends. 4. Blends involving polymers containing methacrylic acid and vinylpyridine groups. Macromolecules. 1988;21(4):954–60. https://doi.org/10.1021/ma00182a019.

    Article  CAS  Google Scholar 

  53. Odinokov SE, Iogansen AV. Torsional γ(OH) vibrations, Fermi resonance [2γ(OH) ⇐ ν(OH)] and isotopic effects in i.r. spectra of H-complexes of carboxylic acids with strong bases. Spectrochim Acta Part A Mol Spectrosc. 1972;28(12):2343–50. https://doi.org/10.1016/0584-8539(72)80214-9.

    Article  CAS  Google Scholar 

  54. Cook AG, Martinez-Felipe A, Brooks NJ, Seddon JM, Imrie CT. New insights into the transitional behaviour of methyl-6-O-( n -dodecanoyl)-α-D-glucopyranoside using variable temperature FTIR spectroscopy and X-ray diffraction. Liq Cryst. 2013;40(12):1817–27. https://doi.org/10.1080/02678292.2013.854556.

    Article  CAS  Google Scholar 

  55. P. K. Nag, Engineering Thermodynamics. Tata McGraw Hill, 2005.

  56. Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. A detailed study of hydrogen bonded ferroelectric mesogens formed between alkyl and alkyloxy benzoic acids with carbamyl glutamic acid. Liq Cryst. 2018;45(3):431–49. https://doi.org/10.1080/02678292.2017.1342145.

    Article  CAS  Google Scholar 

  57. Kishor MH, Madhu Mohan MLN. Realization of memory effect in smectic X* phase. J Mol Struct. 2018;1168:302–8. https://doi.org/10.1016/j.molstruc.2018.05.046.

    Article  CAS  Google Scholar 

  58. Navakd P, Cox R. Study of the smectic a nematic transition in octyl and nonyl cyanobiphenyl. Mol Cryst Liq Cryst. 1984;102(8–9):261–4. https://doi.org/10.1080/01406568408070537.

    Article  Google Scholar 

  59. Navard P, Haudin JM. The height of DSC phase transition peaks application to liquid crystals. J Therm Anal. 1985;30(1):61–4.

    Article  CAS  Google Scholar 

  60. Okumuş M. Thermal characterisation of binary mixture of some supramolecular liquid crystals. J Therm Anal Calorim. 2015;120(3):1603–8. https://doi.org/10.1007/s10973-015-4488-1.

    Article  CAS  Google Scholar 

  61. S. Cheng, Handbook of Thermal Analysis and Calorimetry. 2002.

  62. Andrews JT, Bacon WE. Adiabatic calorimetry of liquid crystals I. Di-(p-methoxyphenyl)-trans-cyclohexane-1,4-dicarboxylate. J Chem Thermodyn. 1974;6(6):515–23. https://doi.org/10.1016/0021-9614(74)90038-X.

    Article  CAS  Google Scholar 

  63. Ashton GP, Charsley EL, Harding LP, Parkes GMB. Applications of a simultaneous differential scanning calorimetry–thermomicroscopy system. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10514-3.

    Article  Google Scholar 

  64. McMillan WL. Simple molecular model for the smectic a phase of liquid crystals. Phys Rev A. 1971;4(3):1238–46. https://doi.org/10.1103/PhysRevA.4.1238.

    Article  Google Scholar 

  65. Kilit E, Yurtseven H. Analysis of the specific heat of p-azoxyanisole (PAA) near the phase transitions. Phys Chem Liq. 2010;48(4):450–60. https://doi.org/10.1080/00319100902946445.

    Article  CAS  Google Scholar 

  66. Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Thermal analysis of hydrogen-bonded ferroelectric liquid crystals. J Therm Anal Calorim. 2017;128(1):369–86. https://doi.org/10.1007/s10973-016-5925-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Science and Engineering Research Board, (SERB) Department of Science and Technology (DST), Government of India for their financial support (EMR / 2017 / 001075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. N. Madhu Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, M.H., Madhu Mohan, M.L.N. Calorimetric study of smectic x* and validation of dynamic memory in ferroelectric binary complexes. J Therm Anal Calorim 147, 3553–3566 (2022). https://doi.org/10.1007/s10973-021-10797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10797-0

Keywords

Navigation