Skip to main content
Log in

Entropy generation analysis in the electro-osmosis-modulated peristaltic flow of Eyring–Powell fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current paper, numerical study is carried out to investigate the peristaltic propulsion of Eyring–Powell fluid in a vertical symmetric channel with electro-kinetic pumping and transvers Lorentz force. The mass, momentum and energy equations for non-Newtonian fluid are formulated and simplified using suitable transformations and dimensionless variables. The governing equations in dimensionless form are solved numerically by implicit finite difference scheme for stream function and temperature profile in computational software Mathematica 9. The impact of several parameters of interest is analyzed and discussed for both values of Helmholtz–Smoluchowski velocity UHS and Joule heating parameter through graphs. An entropy generation analysis is also considered and observed for various values of involved parameters. The nonlinear dimensionless equations are also solved by another numerical technique which is built in routine in MATLAB which is commonly known as bvp4c. The results for velocity and temperature are compared by both techniques. The Joule heating parameter also increases the size and number of isothermal bolus. The entropy of the system can be controlled for assisting pumping, i.e., UHS < 0. The entropy generation decreases with k for UHS < 0, while increases with k for UHS > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15

Similar content being viewed by others

References

  1. Bejan A. Second-law analysis in heat transfer and thermal design. Adv Heat Transf. 1982;15:1–58.

    CAS  Google Scholar 

  2. Nag PK, Kumar N. Second law optimization of convective heat transfer through a duct with constant heat flux. Int J Exergy Res. 1989;13(5):537–43.

    CAS  Google Scholar 

  3. Bejan A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int J Energy Res. 2002;26(7):545–65.

    Google Scholar 

  4. Mahmud S, Fraser RA. Analysis of mixed convection—Radiation interaction in a vertical channel: entropy generation. Energy An Int J. 2002;2(4):330–9.

    Google Scholar 

  5. Azam M, Mabood F, Xu T, Waly M, Tlili I. Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy. Results Phys. 2020;19:103576.

    Google Scholar 

  6. Erbay LB, Yalçın MM, Ercan MŞ. Entropy generation in parallel plate microchannels. Heat Mass Transf. 2007;43(8):729–39.

    Google Scholar 

  7. Makinde OD, Maserumule RL. Thermal criticality and entropy analysis for a variable viscosity Couette flow. Phys Scr. 2008;78(1):015402.

    Google Scholar 

  8. Aïboud S, Saouli S. Second law analysis of viscoelastic fluid over a stretching sheet subject to a transverse magnetic field with heat and mass transfer. Entropy. 2010;12(8):1867–84.

    Google Scholar 

  9. Butt AS, Munawar S, Ali A, Mehmood A. Entropy generation in the Blasius flow under thermal radiation. Phys Scr. 2012;85(3):035008.

    Google Scholar 

  10. Mah WH, Hung YM, Guo N. Entropy generation of viscous dissipative nanofluid flow in microchannels. Int J Heat Mass Transf. 2012;55(15–16):4169–82.

    CAS  Google Scholar 

  11. Das S, Jana RN. Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng J. 2014;5(2):575–84.

    Google Scholar 

  12. Adesanya SO, Makinde OD. Entropy generation in couple stress fluid flow through porous channel with fluid slippage. Int J Exergy. 2014;15(3):344–62.

    CAS  Google Scholar 

  13. Adesanya SO, Kareem SO, Falade JA, Arekete SA. Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy. 2015;93:1239–45.

    CAS  Google Scholar 

  14. Ibáñez G. Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int J Heat Mass Transf. 2015;80:274–80.

    Google Scholar 

  15. Mabood F, Yusuf TA, Rashad AM, Khan WA, Nabwey HA. Effects of combined heat and mass transfer on entropy generation due to MHD nanofluid flow over a rotating frame. Comput Mater Continua. 2021;66(1):575–87.

    Google Scholar 

  16. Raza R, Mabood F, Naz R. Entropy analysis of non-linear radiative flow of Carreau liquid over curved stretching sheet. Int Commun Heat Mass Transf. 2020;119:104975.

    Google Scholar 

  17. Yusuf TA, Mabood F. Slip effects and entropy generation on inclined MHD flow of Williamson fluid through a permeable wall with chemical reaction via DTM. Math Model Eng Prob. 2020;7(1):1–9.

    Google Scholar 

  18. Souidi F, Ayachi K, Benyahia N. Entropy generation rate for a peristaltic pump. J Non-Equilib Thermodyn. 2009;34(2):171–94.

    Google Scholar 

  19. Munawar S, Saleem N, Aboura K. Second law analysis in the peristaltic flow of variable viscosity fluid. Int J Exergy. 2016;20(2):170–85.

    Google Scholar 

  20. Narla VK, Prasad KM, Murthy JR. Second-law analysis of the peristaltic flow of an incompressible viscous fluid in a curved channel. J Eng Phys Thermophys. 2016;89(2):441–8.

    CAS  Google Scholar 

  21. Rashidi MM, Bhatti MM, Abbas MA, Ali MES. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18(4):117.

    Google Scholar 

  22. Akbar NS, Butt AW. Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation. J Hydrodynamics. 2017;29(1):135–43.

    Google Scholar 

  23. Saleem N. Entropy production in peristaltic flow of a space dependent viscosity fluid in asymmetric channel. Therm Sci. 2018;22(6 Part B):2909–18.

    Google Scholar 

  24. Nawaz S, Hayat T, Alsaedi A. Analysis of entropy generation in peristalsis of Williamson fluid in curved channel under radial magnetic field. Comput Meth Prog Bio. 2019;180:105013.

    Google Scholar 

  25. Bibi F, Hayat T, Farooq S, Khan AA, Alsaedi A. Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09125-4.

    Article  Google Scholar 

  26. Hayat T, Nawaz S, Alsaedi A, Ahmad B. Entropy analysis for the peristaltic flow of third grade fluid with variable thermal conductivity. Eur Phys J Plus. 2020;135(6):421.

    CAS  Google Scholar 

  27. Zhao L, Liu LH. Entropy generation analysis of electro-osmotic flow in open-end and closed-end micro-channels. Int J Therm Sci. 2010;49(2):418–27.

    Google Scholar 

  28. Shamshiri M, Khazaeli R, Ashrafizaadeh M, Mortazavi S. Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows. Energy. 2012;42(1):157–69.

    CAS  Google Scholar 

  29. Goswami P, Mondal PK, Datta A, Chakraborty S. Entropy generation minimization in an electroosmotic flow of non-Newtonian fluid: Effect of conjugate heat transfer. J Heat Transf. 2016;138(5):051704.

    Google Scholar 

  30. Bhatti MM, Sheikholeslami M, Zeeshan A. Entropy analysis on electro-kinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel. Entropy. 2017. https://doi.org/10.3390/e19090481.

    Article  Google Scholar 

  31. Xie ZY, Jian YJ. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy. 2017;139:1080–93.

    Google Scholar 

  32. Ranjit NK, Shit GC. Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy. 2017;128:649–60.

    Google Scholar 

  33. Ranjit NK, Shit GC, Tripathi D. Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. Int J Mech Sci. 2019;153:430–44.

    Google Scholar 

  34. Narla VK, Tripathi D, Bég OA. Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Therm Sci Eng Prog. 2020;15:100424.

    Google Scholar 

  35. Swain K, Mahanthesh B. Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04979-5.

    Article  Google Scholar 

  36. Mahanthesh B, Shehzad SA, Ambreen T, Khan SU. Significance of Joule heating and viscous heating on heat transport of MoS 2–Ag hybrid nanofluid past an isothermal wedge. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09578-y.

    Article  Google Scholar 

  37. Gireesha BJ, Srinivasa CT, Shashikumar NS, Macha M, Singh JK, Mahanthesh B. Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel. Part E: J Process Mech Eng. 2019;233(5):1173–84.

    CAS  Google Scholar 

  38. Shashikumar NS, Gireesha BJ, Mahanthesh B, Prasannakumara BC. Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip Model Mater Struct. 2018;14(4):769–86.

    CAS  Google Scholar 

  39. Ahmed B, Hayat T, Alsaedi A, Abbasi FM. Joule heating in mixed convective peristalsis of Sisko nanomaterial. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09997-x.

    Article  Google Scholar 

  40. Wakif A, Boulahia Z, Mishra SR, Rashidi MM, Sehaqui R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur Phys J Plus. 2018;133(5):181.

    Google Scholar 

  41. Wakif A, Boulahia Z, Ali F, Eid MR, Sehaqui R. Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids. Int J Appl Comput Math. 2018;4(3):1–27.

    Google Scholar 

  42. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09488-z.

    Article  Google Scholar 

  43. Wakif A, Sehaqui R. Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water-based nanofluids with metal/metal oxide nanomaterials: a proper application of the revised two-phase nanofluid model with convective heating and through-flow boundary conditions. Numer Methods Partial Differ Equ. 2020. https://doi.org/10.1002/num.22671.

    Article  Google Scholar 

  44. Mabood F, Yusuf TA, Bognár G. Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Sci Rep. 2020;10(1):19163.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mabood F, Bognár G, Shafiq A. Impact of heat generation/absorption of magnetohydrodynamics Oldroyd-B fluid impinging on an inclined stretching sheet with radiation. Sci Rep. 2020;10(1):17688.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Prakash J, Ramesh K, Tripathi D, Kumar R. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc Res. 2018;118:162–72.

    CAS  PubMed  Google Scholar 

  47. Arikoglu A, Ozko I, Komurgoz G. Effect of slip on entropy generation in a single rotating disk in MHD flow. Appl Energy. 2008;85(12):1225–36.

    CAS  Google Scholar 

  48. Abbasi A, Farooq W. A numerical simulation for transport of hybrid nanofluid. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04704-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mustafa M, Abbasbandy S, Hina S, Hayat T. Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J Taiwan Inst Chem Eng. 2014;45(2):308–16.

    CAS  Google Scholar 

  50. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138(2):1311–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazle Mabood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabood, F., Farooq, W. & Abbasi, A. Entropy generation analysis in the electro-osmosis-modulated peristaltic flow of Eyring–Powell fluid. J Therm Anal Calorim 147, 3815–3830 (2022). https://doi.org/10.1007/s10973-021-10736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10736-z

Keywords

Navigation