Skip to main content
Log in

Influence of heat transfer on MHD Carreau fluid flow due to motile cilia in a channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mucus transport mediated by motile cilia in the airway is an important defense mechanism for prevention of respiratory infections. Cilia motility can be affected by temperature difference and magnetic field. In this research, we investigate the combined effects of magnetic field and buoyancy force due to temperature difference. In the present study, mixed convective flow of a Carreau fluid model through a ciliated channel is modeled and analyzed by a symplectic metachoronal wave. The momentum and energy equations for the Carreau fluid are modeled and simplified by the stream function and small Reynold’s number approximation. The influence of magnetic parameter, Carreau fluid parameter, Brinkmann number and Weissenberg number on velocity, temperature and pressure gradient are presented via graphs. It is observed that Hartmann number helps to decelerate the flow, whereas Weissenberg number, Grashof number and Carreau fluid parameter are responsible for the accelerated flow. The heat transfer rate rises by increasing the values of Hartmann number, Weissenberg number, Carreau fluid parameter and Brinkmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\varvec{V}\) :

Velocity field

\(\dot{U}\),\(\dot{V}\) :

Longitudinal and transverse velocities in fixed frame

\(u,v\) :

Longitudinal and transverse velocities in moving frame

\(\dot{X}\),\(\dot{Y}\) :

Coordinates of fixed frame

\(x,y\) :

Coordinates of moving frame

\(\rho\) :

Fluid density

\(\beta_{1}\) :

Coefficient of thermal expansion

\(\varvec{S}\) :

Cauchy stress tensor

\(\varvec{\tau}\) :

Extra stress tensor

\(T\) :

Fluid temperature

\(c_{\text{p}}\) :

Specific heat

\(k\) :

Thermal conductivity of the material

\(\varPhi\) :

Viscous Dissipation

\(n\) :

Power law index

\(\mu_{\infty }\) :

Infinite shear rate

\(\mu_{0}\) :

Zero shear rate viscosity

\(\mu\) :

Viscosity of the fluid

\(\varGamma\) :

Time constant

\(\dot{\varvec{\gamma }}\) :

Shear rate

\(\varvec{b}_{\text{f}}\) :

Body force

\(P\) :

Pressure

\(\psi\) :

Stream function

\(c\) :

Wave speed

\(a\) :

Wave amplitude

\(M\) :

Hartmann number

\(\alpha\) :

Eccentricity of the elliptical motion

\(\beta\) :

Wave number

\(\varepsilon\) :

Cilia length

References

  1. Silva DR, Viana VP, Müller AM, Livi FP, Dalcin Pde T. Respiratory viral infections and effects of meteorological parameters and air pollution in adults with respiratory symptoms admitted to the emergency room. Influenza Other Respir Viruses. 2014;8:42–52.

    Article  CAS  PubMed  Google Scholar 

  2. Domingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res. 2020;187:109650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arbex MA, Santos UD, Martins LC, Saldiva PH, Pereira LA, Braga AL. Air pollution and the respiratory system. J Bras Pneumol. 2012;38:643–55.

    Article  PubMed  Google Scholar 

  4. Wanner A, Salathé M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154:1868–902.

    Article  CAS  PubMed  Google Scholar 

  5. Satir P, Sleigh MA. The physiology of cilia and mucociliary interactions. Ann Rev Physiol. 1990;52:137–55.

    Article  CAS  Google Scholar 

  6. Maurizi M, Paludetti G, Almadori G, Ottaviani F, Todisco T. Mucociliary clearance and mucosal surface characteristics before and after total laryngectom. Acta Otolaryngol. 1986;102:136–45.

    Article  CAS  PubMed  Google Scholar 

  7. Forbes AR. Temperature, humidity and mucus flow in the intubated trachea. Br J Anaesth. 1974;46:29–34.

    Article  CAS  PubMed  Google Scholar 

  8. Koskela HO. Cold air-provoked respiratory symptoms: the mechanisms and management. Int J Circumpolar Health. 2007;66:91–100.

    Article  PubMed  Google Scholar 

  9. Mclane ML, Nelson JA, Lenner KA, Hejal R, Kotaru C, Skowronski M. Integrated response of the upper and lower respiratory tract of asthmatic subjects to frigid air. J Appl Physiol. 2000;88:1043–50.

    Article  CAS  PubMed  Google Scholar 

  10. Fahrni F, Prins MW, Ijzendoorn LJ. Micro-fluidic actuation using magnetic artificial cilia. Lab Chip. 2009;9:3413–21.

    Article  CAS  PubMed  Google Scholar 

  11. Green A, Smallman LA, Logan AM, Drake AB. The effect of temperature on nasal ciliary beat frequency. Clin Otolaryngol. 1995;20:178–80.

    Article  CAS  PubMed  Google Scholar 

  12. Mills ZG, Aziz A, Alexeev A. Beating synthetic cilia enhance heat transport in micro fluidic channels. Soft Matter. 2012;8:11508–13.

    Article  CAS  Google Scholar 

  13. Akbar NS, Tripathi D, Beg OA, Khan ZH. MHD dissipative flow and heat transfer of Casson fluid due to metachoronal wave propulsion of beating cilia with thermal and velocity slip effects under oblique magnetic field. Acta Astronaut. 2016;128:1–12.

    Article  Google Scholar 

  14. Itu C, Öchsner A, Vlase S, Marin MI. Improved rigidity of composite circular plates through radial ribs. Proc Inst Mech Eng L. 2019;233(8):1585–93.

    Google Scholar 

  15. Vlase S, Marin M, Öchsner A, Scutaru ML. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin Mech Thermodyn. 2019;31(3):715–24.

    Article  Google Scholar 

  16. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73–81.

    Article  Google Scholar 

  17. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Article  Google Scholar 

  18. Riaz A, Ellahi R, Bhatti MM, Marin M. Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf Res. 2019;50(16):1539–60.

    Article  Google Scholar 

  19. Tian Z, Arasteh H, Parsian A, Karimipour A, Safaei MR, Nguyen TK. Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed support vector machine method coupled with sensitivity analysis. Phys A. 2019;535:122456.

    Article  CAS  Google Scholar 

  20. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267–87.

    Article  CAS  Google Scholar 

  21. Xiong Q, Bozorg MV, Doranehgard MH, Hong K, Lorenzini G. A CFD investigation of the effect of non-Newtonian behavior of Cu–water nanofluids on their heat transfer and flow friction characteristics. J Therm Anal Calorim. 2020;139:2601–21.

    Article  CAS  Google Scholar 

  22. Shaheen A, Nadeem S. Metachoronal wave analysis for non-Newtonian fluid under thermophoresis and Brownian motion. Results Phys. 2017;7:2950–7.

    Article  Google Scholar 

  23. Riaz A, Nadeem S, Ellahi R, Akbar NS. Series solution of unsteady peristaltic flow of a Carreau fluid in small intestines. Int J Biomath. 2014;7:1450049.

    Article  Google Scholar 

  24. Khan M, Sardar H. Heat generation/absorption and thermal radiation impacts on three-dimensional flow of Carreau fluid with convective heat transfer. J Mol Liq. 2018;272:474–80.

    Article  CAS  Google Scholar 

  25. Nadeem S, Munim A, Shaheen A, Hussain S. Physiological flow of Carreau fluid due to ciliary motion. AIP Adv. 2016;6:035125.

    Article  Google Scholar 

  26. Adomian G. Nonlinear stochastic operator equations. Can Diego, CA: Academic Press; 1986.

    Google Scholar 

  27. Turkyilmazoglu M. Accelerating the convergence of Adomian decomposition method (ADM). J Comput Sci. 2019;31:54–9.

    Article  Google Scholar 

  28. Turkyilmazoglu M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput Meth Prog Bio. 2020;187:105171.

    Article  Google Scholar 

  29. Turkyilmazoglu M. Parametrized Adomian decomposition method with optimum convergence. ACM Trans Model Comput Simul. 2017;27(4):21.

    Article  Google Scholar 

  30. Manzoor N, Maqbool K, Beg OA, Shaheen S. Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection. Heat Transf Asian Res. 2018;48:556–81.

    Article  Google Scholar 

  31. Akbar NS, Butt AW. Heat transfer analysis of Rabinowitsch fluid flow due to metachoronal wave of cilia. Results Phy. 2015;5:92–8.

    Article  Google Scholar 

  32. Bhatti M, Elelamy FA, Ellahi R, Sadiq MS. Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy. Symmetry. 2020;12(4):532.

    Article  Google Scholar 

  33. Horstmann G, Iravani J, Melville GN, Richter HG. Influence of temperature and decreasing water content of inspired air on the ciliated bronchial epithelium. Acta Oto-Laryngol. 1977;84:124–31.

    Article  CAS  Google Scholar 

  34. Blake JR. On the movement of mucus in the lungs. J Biomech. 1975;8:179–90.

    Article  CAS  PubMed  Google Scholar 

  35. Hwang SH, Litt M, Forsman WC. Rheological properties of mucus. Rheol Acta. 1969;8:438–48.

    Article  Google Scholar 

  36. Vélez-Cordero JR, Lauga E. Waving transport and propulsion in a generalized Newtonian fluid. J Non-Newton Fluid Mech. 2013;199:37–50.

    Article  Google Scholar 

  37. Siddiqui AM, Farooq AA, Rana MA. An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube. Int J Biomath. 2015;8:1550016.

    Article  Google Scholar 

  38. Saleem N, Hayat T, Alsaedi A. A hydromagnetic mathematical model for blood flow of Carreau fluid. Int J Biomath. 2014;7:1450010.

    Article  Google Scholar 

  39. Siddiqui AM, Sohail A, Maqbool K. Analysis of a channel and tube flow induced by cilia. Appl Math Comput. 2017;309:133–41.

    Google Scholar 

  40. Hayat T, Farooq S, Ahmad B, Alsaedi A. Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating. AIP Adv. 2016;6:045302.

    Article  Google Scholar 

  41. Siddiqui AM, Farooq AA, Rana MA. Study of MHD effects on the cilia-induced flow of a Newtonian fluid through a cylindrical tube. Magnetohydrodynamics. 2014;50:249–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Maqbool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqbool, K., Manzoor, N., Ellahi, R. et al. Influence of heat transfer on MHD Carreau fluid flow due to motile cilia in a channel. J Therm Anal Calorim 144, 2317–2326 (2021). https://doi.org/10.1007/s10973-020-10476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10476-6

Keywords

Navigation