Skip to main content
Log in

Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this study, the motion equations of a one-dimensional finite element having a general three-dimensional motion together the body are established, using the Lagrange’s equations. The problem is important in technical applications of the last decades, characterized by high velocities and high applied loads. This leads to qualitative different mechanical phenomena (high deformations, resonance, stability), mainly due to the Coriolis effects and relative motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Falco, D., Pennestri, E., Vita, L.: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Article  Google Scholar 

  2. Deu, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(35), 258–265 (2008)

    Article  Google Scholar 

  3. Erdman, A.G., Sandor, G.N., Oakberg, A.: A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Eng. Ind. ASME Trans. 94(4), 1193–1203 (1972)

    Article  Google Scholar 

  4. Fanghella, P., Galletti, C., Torre, G.: An explicit independent-coordinate formulation for equations of motion of flexible multibody systems. Mech. Mach. Theory 38, 417–437 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerstmayr, J., Schberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)

    Article  MathSciNet  Google Scholar 

  6. Hou, W., Zhang, X.: Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 319(12), 570–592 (2009)

    Article  ADS  Google Scholar 

  7. Ibrahimbegovic, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khang, N.V.: Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems. Mech. Res. Commun. 38(4), 294–299 (2011)

    Article  MATH  Google Scholar 

  9. Khulief, Y.A.: On the finite element dynamic analysis of flexible mechanisms. Comput. Methods Appl. Mech. Eng. 97(1), 23–32 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Marin, M., Agarwal, R.P., Mahmoud, S.R.: Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal. 2013, 1–7 (2013)

    Article  Google Scholar 

  11. Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 2008, 1–8 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marin, M., Baleanu, D., Vlase, S.: Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381–387 (2017)

    Article  Google Scholar 

  14. Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  15. Mayo, J., Dominguez, J.: Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: geometric stiffness. Comput. Struct. 59(6), 1039–1050 (1996)

    Article  MATH  Google Scholar 

  16. Negrean, I.: Advanced notions in analytical dynamics of systems. Acta Tech. Napoc. Appl. Math. Mech. Eng. 60(4), 491–502 (2017)

    Google Scholar 

  17. Negrean, I.: New formulations in analytical dynamics of systems. Acta Tech. Napoc. Appl. Math. Mech. Eng. 60(1), 49–56 (2017)

    Google Scholar 

  18. Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195(5051), 6860–6873 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method. Springer, Singapore (2016)

    Book  Google Scholar 

  20. Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)

    Article  MATH  Google Scholar 

  21. Shi, Y.M., Li, Z.F., Hua, H.X., Fu, Z.F., Liu, T.X.: The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib. 245(5), 785–800 (2001)

    Article  ADS  Google Scholar 

  22. Simeon, B.: On Lagrange multipliers in flexible multibody dynamic. Comput. Methods Appl. Mech. Eng. 195(50–51), 6993–7005 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sung, C.K.: An experimental study on the nonlinear elastic dynamic response of linkage mechanism. Mech. Mach. Theory 21, 121–133 (1986)

    Article  Google Scholar 

  24. Thompson, B.S., Sung, C.K.: A survey of finite element techniques for mechanism design. Mech. Mach. Theory 21(4), 351–359 (1986)

    Article  Google Scholar 

  25. Vlase, S.: A method of eliminating Lagrangian multipliers from the equations of motion of interconnected mechanical systems. J. Appl. Mech. ASME Trans. 54(1), 235–237 (1987)

    Article  ADS  Google Scholar 

  26. Vlase, S.: Elimination of lagrangian multipliers. Mech. Res. Commun. 14(1), 17–22 (1987)

    Article  MATH  Google Scholar 

  27. Vlase, S.: Finite element analysis of the planar mechanisms: numerical aspects. Appl. Mech. 4, 90–100 (1992)

    ADS  Google Scholar 

  28. Vlase, S.: Dynamical response of a multibody system with flexible element with a general three-dimensional motion. Rom. J. Phys. 57(3–4), 676–693 (2012)

    Google Scholar 

  29. Vlase, S., Danasel, C., Scutaru, M.L., Mihalcica, M.: Finite element analysis of two-dimensional linear elastic systems with a plane Rigid motion. Rom. J. Phys. 59(5–6), 476–487 (2014)

    Google Scholar 

  30. Zhang, X., Erdman, A.G.: Dynamic responses of flexible linkage mechanisms with visco-elastic constrained layer damping treatment. Comput. Struct. 79(13), 1265–1274 (2001)

    Article  Google Scholar 

  31. Zhang, X., Lu, J., Shen, Y.: Simultaneous optimal structure and control design of flexible linkage mechanism for noise attenuation. J. Sound Vib. 299(45), 1124–1133 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlase, S., Marin, M., Öchsner, A. et al. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Continuum Mech. Thermodyn. 31, 715–724 (2019). https://doi.org/10.1007/s00161-018-0722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0722-y

Keywords

Navigation