Skip to main content
Log in

Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to examine the thermal conductivity of reduced Graphene Oxide solid dispersed in the Water fluid. For this mono-nanofluid, thermal conductivity was examined in particular temperatures (25–50 °C) and mass fractions (1–5 mg mL−1). Field emission scanning electron microscope test was done to observe the microstructure of the solid. The results showed the highest thermal conductivity enhancement (31.19%) in 5 mass%–50 °C. A novel correlation including 1.25% utmost deviation was predicted via curve-fitting on the 3D-output to tally the thermal conductivity of the nanofluid. Then, an artificial neural network with R2 = 0.99 was trained. Endmost, rGO/Water has satisfactory heat transfer capacity in thermal industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Choi SUS, et al. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135–29. Argonne National Lab., IL (United States) (1995).

  2. Okonkwo EC, et al. An updated review of nanofluids in various heat transfer devices. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  3. Zheng Y, et al. Potential energy and atomic stability of H2O/CuO nanoparticles flow and heat transfer in non-ideal microchannel via molecular dynamic approach: The Green-Kubo method. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10054-w.

    Article  Google Scholar 

  4. Afridi MI, et al. Entropy Generation in Cu-Al2O3-H2O Hybrid Nanofluid Flow over a Curved Surface with Thermal Dissipation. Entropy, 2019;21(10): 941. https://doi.org/https://doi.org/10.3390/e21100941

  5. Safaei MR, et al. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09911-5.

    Article  Google Scholar 

  6. Sarafraz MM, et al. Convective bubbly flow of water in an annular pipe: role of total dissolved solids on heat transfer characteristics and bubble formation. Water. 2019;11(8):1566. https://doi.org/10.3390/w11081566.

    Article  CAS  Google Scholar 

  7. Martínez-Merino P, et al. The Role of the Interactions at the Tungsten Disulphide Surface in the Stability and Enhanced Thermal Properties of Nanofluids with Application in Solar Thermal Energy. Nanomaterials. 2020;10(5):970. https://doi.org/10.3390/nano10050970.

    Article  CAS  PubMed Central  Google Scholar 

  8. Alawi OA, et al. Energy efficiency of a flat-plate solar collector using thermally treated graphene-based nanofluids: Experimental study. Nanomater Nanotechnol. 2020;10:1847980420964618. https://doi.org/10.1177/1847980420964618.

    Article  CAS  Google Scholar 

  9. Tlili I, et al. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin. 2019a;9(3):232–48. https://doi.org/10.2166/wrd.2019.057.

    Article  CAS  Google Scholar 

  10. Tlili I, et al. Water management and desalination in KSA view 2030. J Thermal Anal Calorim. 2020;139(6):3745–56. https://doi.org/10.1007/s10973-019-08700-z.

    Article  CAS  Google Scholar 

  11. Lee S et al. Application of metallic nanoparticle suspensions in advanced cooling systems. No. ANL/ET/CP-90558; CONF-961105–20. Argonne National Lab., IL (United States) (1996).

  12. Zhang X, et al. Analysis of hemodynamics and heat transfer of nanoparticle-injected atherosclerotic patient: Considering the drag force and slip between phases of different particle shapes and volume fractions. Int J Thermal Sci. 2020;159:106637. https://doi.org/10.1016/j.ijthermalsci.2020.106637.

    Article  Google Scholar 

  13. Tlili I, et al. Investigation of thermal characteristics of carbon nanotubes: Measurement and dependence. J Mol Liq. 2019b;294:111564. https://doi.org/10.1016/j.molliq.2019.111564.

    Article  CAS  Google Scholar 

  14. Chen D, et al. Experimental investigation of viscosity, enhanced thermal conductivity and zeta potential of a TiO2 electrolyte–based nanofluid. Int Commun Heat Mass Transf. 2020;118:104840. https://doi.org/10.1016/j.icheatmasstransfer.2020.104840.

    Article  CAS  Google Scholar 

  15. Xu Y, et al. Synthesis and characterization of additive graphene oxide nanoparticles dispersed in water: Experimental and theoretical viscosity prediction of non-Newtonian nanofluid. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6381.

    Article  Google Scholar 

  16. Ansón-Casaos A, et al. The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Phys Chem Chem Phys. 2020;22(20):11474–84. https://doi.org/10.1039/D0CP00468E.

    Article  PubMed  Google Scholar 

  17. Sharma S, et al. Molecular level investigation of curcumin self-assembly induced by trigonelline and nanoparticle formation. Appl Nanosci. 2020;10(11):3987–98. https://doi.org/10.1007/s13204-020-01526-4.

    Article  CAS  Google Scholar 

  18. Topal I, et al. Molecular dynamics study of the thermal conductivity in nanofluids. Chem Phys. 2019;516:147–51. https://doi.org/10.1016/j.chemphys.2018.09.001.

    Article  CAS  Google Scholar 

  19. Nguyen Q, et al. Discrete ordinates thermal radiation with mixed convection to involve nanoparticles absorption, scattering and dispersion along radiation beams through the nanofluid. J Thermal Anal Calorim. 2020a. https://doi.org/10.1007/s10973-020-10005-5.

    Article  Google Scholar 

  20. Esencan Turkaslan B, et al. Optimizing parameters of graphene derivatives synthesis by modified improved Hummers. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6704.

    Article  Google Scholar 

  21. Alsarraf J, et al. Increase thermal conductivity of aqueous mixture by additives graphene nanoparticles in water via an experimental/numerical study: Synthesise, characterization, conductivity measurement, and neural network modeling. Int Commun Heat Mass Transf. 2020;118:104864. https://doi.org/10.1016/j.icheatmasstransfer.2020.104864.

    Article  CAS  Google Scholar 

  22. Liu WI, et al. A novel comprehensive experimental study concerned graphene oxide nanoparticles dispersed in water: Synthesise, characterisation, thermal conductivity measurement and present a new approach of RLSF neural network. Int Commun Heat Mass Transf. 2019;109:104333. https://doi.org/10.1016/j.icheatmasstransfer.2019.104333.

    Article  CAS  Google Scholar 

  23. Kazemi I, et al. Improving the thermal conductivity of water by adding mono & hybrid nano-additives containing graphene and silica: A comparative experimental study. Int Commun Heat Mass Transf. 2020;116:104648. https://doi.org/10.1016/j.icheatmasstransfer.2020.104648.

    Article  CAS  Google Scholar 

  24. Nguyen Q, et al. A novel correlation to calculate thermal conductivity of aqueous hybrid graphene oxide/silicon dioxide nanofluid: synthesis, characterizations, preparation, and artificial neural network modeling. Arabian J Sci Eng. 2020b. https://doi.org/10.1007/s13369-020-04885-w.

    Article  Google Scholar 

  25. Wang J, et al. Established prediction models of thermal conductivity of hybrid nanofluids based on artificial neural network (ANN) models in waste heat system. Int Commun Heat Mass Transf. 2020;110:104444. https://doi.org/10.1016/j.icheatmasstransfer.2019.104444.

    Article  CAS  Google Scholar 

  26. ASHRAE, 2015 Ashrae Handbook HVAC applications. (2015).

  27. Ijam A, et al. A glycerol–water-based nanofluid containing graphene oxide nanosheets. J Mater Sci. 2014. https://doi.org/10.1007/s10853-014-8312-2.

    Article  Google Scholar 

  28. Sen Gupta S, et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys. 2011. https://doi.org/10.1063/1.3650456.

    Article  Google Scholar 

  29. Glory J, et al. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008. https://doi.org/10.1063/1.2908229.

    Article  Google Scholar 

  30. Assael MJ, et al. Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys. 2004. https://doi.org/10.1023/B:IJOT.0000038494.22494.04.

    Article  Google Scholar 

  31. Hwang YJ, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006. https://doi.org/10.1016/j.cap.2005.07.021.

    Article  Google Scholar 

  32. Das SK, et al. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Trans. 2003. https://doi.org/10.1115/1.1571080.

    Article  Google Scholar 

  33. Du C, et al. "Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6466.

    Article  Google Scholar 

  34. Jha N, et al. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl Phys. 2009. https://doi.org/10.1063/1.3240307.

    Article  Google Scholar 

  35. Chon CH, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005. https://doi.org/10.1063/1.2093936.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Tawfeeq Abdullah Alkanhal would like to thank Deanship of Scientific Research at Majmaah University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfeeq Abdullah Alkanhal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkanhal, T.A. Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling. J Therm Anal Calorim 144, 2605–2614 (2021). https://doi.org/10.1007/s10973-020-10433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10433-3

Keywords

Navigation