Skip to main content
Log in

Potential energy and atomic stability of H2O/CuO nanoparticles flow and heat transfer in non-ideal microchannel via molecular dynamic approach: the Green–Kubo method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is interesting to investigate the number of nanoparticle (NP) and temperature effects on H2O/CuO nanofluid thermal conductivity and the atomic manner in a non-ideal microchannel. The outcomes of the physical features of these structures were supposed using molecular dynamic (MD) method and LAMMPS simulation package. For the study of dynamic properties of nanofluid microchannel system, parameters such as temperature profiles, velocity, density, and potential energy of H2O/CuO atomic structures were calculated. Furthermore, the thermal conductivity of these structures was estimated by the Green–Kubo method in the final step. This simulation shows that nanoparticle number is a crucial parameter in nanofluid movement in a microchannel. Theoretically, via adding CuO nanoparticle to H2O fluid, the maximum rate of velocity, density, temperature, and thermal conductivity of base fluid increases to 0.106 g cm−3, 29.810 A ps−1, 549.217 K, and 0.81 W mK−1 rates, respectively. Moreover, the temperature increase of Cu microchannel increases the rate of density, velocity, temperature, and thermal conductivity of CuO nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hoseinzadeh S, Heyns PS. Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Eng Fail Anal. 2020. https://doi.org/10.1016/j.engfailanal.2020.104548.

    Article  Google Scholar 

  2. Hoseinzadeh S, et al. A detailed experimental airfoil performance investigation using an equipped wind tunnel. Flow Meas Instrum. 2020. https://doi.org/10.1016/j.flowmeasinst.2020.101717.

    Article  Google Scholar 

  3. Hoseinzadeh S, et al. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transf. 2019;33(3):698–704. https://doi.org/10.2514/1.T5583.

    Article  CAS  Google Scholar 

  4. Hoseinzadeh S, et al. The injection of Ag nanoparticles on surface of WO 3 thin film: enhanced electrochromic coloration efficiency and switching response. J Mater Sci Mater Electron. 2017;28(19):14855–63. https://doi.org/10.1007/s10854-017-7357-9.

    Article  CAS  Google Scholar 

  5. Ghalambaz M, et al. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97. https://doi.org/10.1016/j.ijmecsci.2017.09.045.

    Article  Google Scholar 

  6. Ghalambaz M, et al. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int J Therm Sci. 2017;111:256–73. https://doi.org/10.1016/j.ijthermalsci.2016.09.001.

    Article  CAS  Google Scholar 

  7. Ghalambaz M, et al. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15. https://doi.org/10.1016/j.jtice.2017.01.010.

    Article  CAS  Google Scholar 

  8. Ghalambaz M, et al. Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol. 2015;26(1):224–35. https://doi.org/10.1016/j.apt.2014.10.001.

    Article  CAS  Google Scholar 

  9. Ghasemi MH, et al. Numerical analysis of non-fourier heat transfer in a solid cylinder with dual-phase-lag phenomenon. CMES Comput Model Eng Sci. 2020. https://doi.org/10.32604/cmes.2020.07827.

    Article  Google Scholar 

  10. Bahrami A, et al. Experimental investigation of co-flow jet’s airfoil flow control by hot wire anemometer. Rev Sci Instrum. 2019;90(12):125107. https://doi.org/10.1063/1.5113592.

    Article  CAS  PubMed  Google Scholar 

  11. Sohani A, et al. Determination of Hildebrand solubility parameter of pure 1-alkanols up to high pressures. J Mol Liq. 2020;297:111847. https://doi.org/10.1016/j.molliq.2019.111847.

    Article  CAS  Google Scholar 

  12. Goodarzi M, et al. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20. https://doi.org/10.1016/j.ijthermalsci.2013.08.003.

    Article  CAS  Google Scholar 

  13. Taylor R, et al. Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 2013;113(1):1. https://doi.org/10.1063/1.4754271.

    Article  CAS  Google Scholar 

  14. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128:240–50. https://doi.org/10.1115/1.2150834.

    Article  Google Scholar 

  15. Argonne Transportation Technology R&D Center.

  16. Minkowycz WJ, et al. Nanoparticle heat transfer and fluid flow, vol. 4. Boca Raton: CRC Press; 2012.

    Google Scholar 

  17. Das SK, Choi SUS, Wenhua Y, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2007. p. 397.

    Book  Google Scholar 

  18. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13-14):3187–96. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.

    Article  CAS  Google Scholar 

  19. Witharana S, Ding Y. Stability of nanofluids in quiescent and shear flow fields. Nanoscale Res Lett. 2011;6:231.

    Article  Google Scholar 

  20. Chen H, et al. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 2009;7(2):151–7. https://doi.org/10.1016/j.partic.2009.01.005.

    Article  CAS  Google Scholar 

  21. Bahiraei M. Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. J Mol Liq. 2015;209:531–8. https://doi.org/10.1016/j.molliq.2015.06.030.

    Article  CAS  Google Scholar 

  22. Malvandi A, et al. Thermal performance analysis of hydromagnetic Al2O3-water nanofluid flows inside a concentric microannulus considering nanoparticle migration and asymmetric heating. Int J Therm Sci. 2016;109:10–22. https://doi.org/10.1016/j.ijthermalsci.2016.05.023.

    Article  CAS  Google Scholar 

  23. Bahiraei M. Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian-Lagrangian simulation. Adv Powder Technol. 2015;26(3):802–10. https://doi.org/10.1016/j.apt.2015.02.005.

    Article  Google Scholar 

  24. Pakravan HA, Yaghoubi M. Analysis of nanoparticles migration on natural convective heat transfer of nanofluids. Int J Therm Sci. 2013;68:79–93. https://doi.org/10.1016/j.ijthermalsci.2012.12.012.

    Article  CAS  Google Scholar 

  25. Malvandi A, et al. Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink. Adv Powder Technol. 2016;27(1):245–54. https://doi.org/10.1016/j.apt.2015.12.009.

    Article  CAS  Google Scholar 

  26. Malvandi A, Ganji DD. Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int J Therm Sci. 2014;84:196–206. https://doi.org/10.1016/j.ijthermalsci.2014.05.013.

    Article  CAS  Google Scholar 

  27. Bahiraei M, Abdi F. Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometr Intell Lab Syst. 2016;157:16–28. https://doi.org/10.1016/j.chemolab.2016.06.012.

    Article  CAS  Google Scholar 

  28. Alder BJ, Everett Wainwright T. Studies in molecular dynamics. I. General method. J Chem Phys. 1959;31(2):459–66. https://doi.org/10.1063/1.1730376.

    Article  CAS  Google Scholar 

  29. Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964;136(2A):A405. https://doi.org/10.1103/PhysRev.136.A405.

    Article  Google Scholar 

  30. Laplace PS. Théorie analytique des probabilités. Paris: Courcier; 1820.

    Google Scholar 

  31. Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn. 1957;12(6):570–86. https://doi.org/10.1143/jpsj.12.570.

    Article  Google Scholar 

  32. Touloukian P, Ho K. Purdue Research Foundation, TPRC Data Series vol 3 (1970) https://apps.dtic.mil/dtic/tr/fulltext/u2/a951937.pdf.

  33. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. No. SAND-91-1144. Sandia National Labs., Albuquerque, NM (United States), 1993. https://doi.org/10.1006/jcph.1995.1039.

  34. Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bull. 2012;37(5):513. https://doi.org/10.1557/mrs.2012.96.

    Article  CAS  Google Scholar 

  35. Brown WM, et al. Implementing molecular dynamics on hybrid high performance computers–short range forces. Comput Phys Commun. 2011;182(4):898–911. https://doi.org/10.1016/j.cpc.2010.12.021.

    Article  CAS  Google Scholar 

  36. Brown WM, et al. Implementing molecular dynamics on hybrid high performance computers–particle–particle particle-mesh. Comput Phys Commun. 2012;183(3):449–59. https://doi.org/10.1016/j.cpc.2011.10.012.

    Article  CAS  Google Scholar 

  37. Sarafraz MM, et al. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Thermal Fluid Sci. 2018;91:509–19. https://doi.org/10.1016/j.expthermflusci.2017.11.007.

    Article  CAS  Google Scholar 

  38. Sarafraz MM, et al. Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. Int J Hydrogen Energy. 2019;44(36):19628–39. https://doi.org/10.1016/j.ijhydene.2019.05.215.

    Article  CAS  Google Scholar 

  39. Sarafraz MM, et al. Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology. Energy Convers Manag. 2019;199:111983. https://doi.org/10.1016/j.enconman.2019.111983.

    Article  CAS  Google Scholar 

  40. Sarafraz MM, et al. Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl Therm Eng. 2017;123:29–39. https://doi.org/10.1016/j.applthermaleng.2017.05.056.

    Article  CAS  Google Scholar 

  41. Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9. https://doi.org/10.1016/j.applthermaleng.2018.04.024.

    Article  CAS  Google Scholar 

  42. Sarafraz MM, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Transfer. 2018;94:39–46. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.013.

    Article  CAS  Google Scholar 

  43. Sarafraz MM, et al. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;263:382–9. https://doi.org/10.1016/j.molliq.2018.05.026.

    Article  CAS  Google Scholar 

  44. Martínez L, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157–64. https://doi.org/10.1002/jcc.21224.

    Article  CAS  PubMed  Google Scholar 

  45. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng. 2009;18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012.

    Article  Google Scholar 

  46. Safaei MR, et al. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf A Appl. 2014;66(12):1321–40. https://doi.org/10.1080/10407782.2014.916101.

    Article  CAS  Google Scholar 

  47. Dehghani Y, et al. Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. J Therm Anal Calorim. 2019;135(1):713–28. https://doi.org/10.1007/s10973-018-7394-5.

    Article  CAS  Google Scholar 

  48. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–9. https://doi.org/10.1063/1.447334.

    Article  Google Scholar 

  49. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695. https://doi.org/10.1103/PhysRevA.31.1695.

    Article  CAS  Google Scholar 

  50. Gibbs JW. Elementary principles in statistical mechanics. New York: Charles Scribner’s Sons; 1902.

    Google Scholar 

  51. Du C, et al. Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: characterization and numerical modeling patterns. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6466.

    Article  Google Scholar 

  52. Xu Y, et al. Synthesis and characterization of additive graphene oxide nanoparticles dispersed in water: experimental and theoretical viscosity prediction of non-Newtonian nanofluid. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6381.

    Article  Google Scholar 

  53. Liu WI, et al. A novel comprehensive experimental study concerned graphene oxide nanoparticles dispersed in water: synthesise, characterisation, thermal conductivity measurement and present a new approach of RLSF neural network. Int Commun Heat Mass Transf. 2019;109:104333. https://doi.org/10.1016/j.icheatmasstransfer.2019.104333.

    Article  CAS  Google Scholar 

  54. Karimipour A, et al. Thermal conductivity enhancement via synthesis produces a new hybrid mixture composed of copper oxide and multi-walled carbon nanotube dispersed in water: experimental characterization and artificial neural network modeling. Int J Thermophys. 2020;41(8):116. https://doi.org/10.1007/s10765-020-02702-y.

    Article  CAS  Google Scholar 

  55. Arasteh H, et al. Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):1045–58. https://doi.org/10.1007/s10973-019-08007-z.

    Article  CAS  Google Scholar 

  56. Hajatzadeh Pordanjani A, et al. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019. https://doi.org/10.1007/s10973-018-7982-4.

    Article  CAS  Google Scholar 

  57. Ahmadi B, et al. Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle. J Thermal Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-09088-6.

    Article  Google Scholar 

  58. Praprotnik M, et al. Temperature dependence of water vibrational spectrum: a molecular dynamics simulation study. J Phys Chem A. 2004;108(50):11056–62. https://doi.org/10.1021/jp046158d.

    Article  CAS  Google Scholar 

  59. Barnoon P, et al. Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09896-1.

    Article  Google Scholar 

  60. Jones JE. On the determination of molecular fields.—II. From the equation of state of a gas. Proc R Soc Lond Ser A Contain Papers Math Phys Charact. 1924;106(738):463–77. https://doi.org/10.1098/rspa.1924.0082.

    Article  CAS  Google Scholar 

  61. Varzaneh AA, et al. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2020;139(1):701–20. https://doi.org/10.1007/s10973-019-08381-8.

    Article  CAS  Google Scholar 

  62. Peng Y, et al. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139(4):2623–31. https://doi.org/10.1007/s10973-019-08684-w.

    Article  CAS  Google Scholar 

  63. Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37(12):6991. https://doi.org/10.1103/PhysRevB.37.6991.

    Article  CAS  Google Scholar 

  64. Nguyen Q et al. Discrete Ordinates thermal radiation with mixed convection to involve nanoparticles absorption, scattering and dispersion along radiation beams through the nanofluid. J Therm Anal Calorim. 2020.

  65. Zheng Y, et al. Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09497-y.

    Article  Google Scholar 

  66. Green Melville S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys. 1954;22(3):398–413. https://doi.org/10.1063/1.1740082.

    Article  CAS  Google Scholar 

  67. He W, et al. Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites. J Therm Anal Calorim. 2020;139(4):2801–10. https://doi.org/10.1007/s10973-019-09059-x.

    Article  CAS  Google Scholar 

  68. Wu H, et al. Heat transfer analysis of energy and exergy improvement in water-tube boiler in steam generation process. J Therm Anal Calorim. 2020;139(4):2791–9. https://doi.org/10.1007/s10973-019-09034-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51979215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, X., Soleimani Mobareke, M.T. et al. Potential energy and atomic stability of H2O/CuO nanoparticles flow and heat transfer in non-ideal microchannel via molecular dynamic approach: the Green–Kubo method. J Therm Anal Calorim 144, 2515–2523 (2021). https://doi.org/10.1007/s10973-020-10054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10054-w

Keywords

Navigation