Skip to main content
Log in

Thermal barrier coated surface modifications for gas turbine film cooling: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gas turbines are widely used in the areas of air propulsion, electric power generation, ship propulsion, external driving units, and other industrial applications. Efficient coating and cooling methods are often essential for the gas turbine surfaces to further achieve higher turbine inlet temperature and output efficiency. The thermal barrier coating (TBC) is the type of multilayered coating applied on rotating and stationary surfaces of the gas turbine components to safeguard them against the attack of high stream thermal loads and pressure gradients of the hot mainstream flows. TBC can also assist in surface-modified film cooling of gas turbine components. In this paper, the thermal barrier coated surface-modified film cooling methods for gas turbine components, viz. leading edge, pressure side, suction side, end wall, flat surfaces of stator guide vane and rotor blade, were reviewed and discussed in detail. The surface-modified film cooling methods for gas turbine components are grouped into three broad categories based on their geometric appearance. Each group was reviewed in detail for geometric and flow parameters, measurement techniques, flow characteristics, and performance parameters. Further, this study provides an overview of geometric and flow parameters of the compound angled film hole. Finally, the areas required for future research on the application of surface-modified film cooling methods are recommended in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Abbreviations

A :

Area of thermal flux surface (mm2)

B :

Distance between bump trailing edge and film hole center (mm)

C :

Distance between step trailing edge and film hole center (mm)

c :

Specific heat capacity (J kg−1 K−1)

D :

Film hole diameter (mm)

D t,m :

Turbulent diffusion coefficient (m2 s−1)

d :

Depth of the trench (mm)

E :

Crater diameter (mm)

\(\vec{E}\) :

Flux vector in the x-direction (–)

F :

Height of blockage within the film hole (mm)

G :

Height of micro-vortex generator (mm)

H :

Height of the barchan dune (mm)

\(\vec{H}\) :

Source vector term (–)

h :

Heat transfer coefficient (W m−2 K−1)

I :

Current (A)

J :

Distance between the trailing edge of vortex generator and film hole (mm)

K :

Thermal conductivity (W m−1 K−1)

L :

Length of film cooling hole (mm)

:

Width of the trench (mm)

L/D :

Length-to-diameter ratio of film hole (–)

M :

Injection (or) blowing ratio (–)

n :

Depth of crater (mm)

P/D :

Pitch-to-diameter ratio of film hole (–)

Pr:

Prandtl number (–)

Q :

Distance between the obstacle and film hole exit (mm)

q″:

Surface heat flux (W m−2)

R:

Height of the step (mm)

R:

Thermal resistance (m2 K W−1)

S :

Distance between ramp trailing edge and the leading edge of film hole (mm)

Sc:

Schmidt number (–)

TI:

Turbulence intensity (%)

T R :

Reference temperature (K)

t :

Temporal coordinate (s)

t :

Time (s)

\(\vec{U}\) :

Solution vector (–)

u :

Velocity of flow (m s−1)

u 2 :

Finite speed of thermal wave propagation (m s−1)

ū :

Local average absolute velocity (m s−1)

ū m :

Main flow average absolute velocity (m s−1)

ū/ū m :

Average normalized velocity (–)

V :

Voltage (V)

W :

Height of bump or block (mm)

X/D :

Non-dimensional longitudinal length of the test surface (–)

\(x\) :

Spatial coordinate in \(x\)-direction (m)

Y/D :

Non-dimensional span side length of the test surface (–)

Z/D :

Non-dimensional vertical length from the test surface (–)

α :

Ramp angle (°)

α :

Thermal diffusivity (m2 s−1)

β :

Injection angle of film hole (°)

\(\varGamma_{\text{m}}\) :

Mass fraction of species m (–)

\(\nabla\)T:

Temperature gradient (K m−1)

γ :

Film hole compound angle (°)

ε :

Emissivity (–)

\(\eta\) :

Film cooling effectiveness (–)

θ :

Non-dimensional temperature (–)

ρ :

Density (kg m−3)

σ :

Stephen Boltzmann constant (W m−2 K−4)

τ :

Relaxation time (s)

φ :

Overall film cooling effectiveness (–)

\(\chi\) :

Coolant warming factor (–)

ω Z :

Spanwise instantaneous vorticity (s−1)

ave:

Averaged

aw:

Adiabatic wall

c:

Coolant

c,exit:

Coolant at film cooling hole exit

c,in:

Coolant at upstream of impingement plate

e:

External surface

f:

With film cooling

i:

Initial

i:

Internal

o:

Without film cooling

surf:

Surface

t:

Time

w:

Wall

∞:

Mainstream

APS:

Air plasma spraying

BD:

Barchan dune

BDSR:

Barchan-dune-shaped ramp

BL:

Boundary layer

CFD:

Computational fluid dynamics

CL:

Centerline

CR:

Covering ratio

CRV:

Counter-rotating vortex

DC:

Discharge coefficient

DSGT:

Double-sided grooved trench

EB PVD:

Electron beam physical vapor deposition

FC:

Film cooling

FCE:

Film cooling effectiveness

FCH:

Film cooling hole

HT:

Heat transfer

HTC:

Heat transfer coefficient

IR:

Injection ratio

KH:

Kelvin–Helmholtz

LA:

Lateral averaged

LCT:

Liquid crystal thermography

LES:

Large-eddy simulation

LE:

Leading edge

PS:

Pressure side

RANS:

Reynolds averaged Navier strokes

RFC:

Ramp film cooling

SA:

Spatial averaged

SH:

Showerhead

SST:

Shear stress transport

ST:

Segregated trench

TBC:

Thermal barrier coating

TE:

Trailing edge

TFC:

Trench film cooling

TGO:

Thermal grown oxide

TT:

Transverse trench

VG:

Vortex generator

YSZ:

Yttria-stabilized zirconia

References

  1. Fritscher K, Leyens C, Peters M. Development of low expansion bond coating for Ni-base superalloys. Mat Sci Eng. 1995;A190:253–8.

    Article  CAS  Google Scholar 

  2. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas turbine engine applications. Science. 2002;296:280–4.

    Article  CAS  PubMed  Google Scholar 

  3. Grappa I, Rao AS. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf Coat Technol. 2006;201:3016–29.

    Article  CAS  Google Scholar 

  4. Clarke DR, Oechsner M, Padture NP. Thermal barrier coatings for more efficient gas turbine engines. MRS Bull. 2012;37:891–8.

    Article  CAS  Google Scholar 

  5. Misra AK, Greenbauer-Seng LA. Aerospace propulsion and power materials and structures research at NASA Glenn research center. J Aerosp Eng. 2013;26:459–90.

    Article  Google Scholar 

  6. Hardwicke CU, Lau Y. Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol. 2013;22(5):564–76.

    Article  Google Scholar 

  7. Bunker RS, Bailey JC, Lee C, Abuaf N. Method for improving the cooling effectiveness of a gaseous coolant stream and related article of manufacture. USA Patent. 2001; Patent No. US 6234755 B1.

  8. Fric TF, Campbell RP. Method for improving the cooling effectiveness of a gaseous coolant stream which flows through a substrate and related articles of manufacture. USA Patent. 2002; Patent No. US 6383602 B1.

  9. Shih TIP, Na S. Preventing hot gas ingestion by film cooling jet via. flow aligned blockers. USA Patent. 2011; Patent No. US 8066478 B1.

  10. Waye SK, Bogard DG. High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations. J Turbomach. 2007;129:294–302.

    Article  Google Scholar 

  11. Lu Y, Dhungel A, Ekkad SV, Bunker RS. Effect of trench width and depth on film cooling from cylindrical holes embedded in trenches. J. Turbomach. 2009;131:011003-1-13.

    Google Scholar 

  12. Harrison KL, Bogard DG. CFD Predictions of film cooling adiabatic effectiveness for cylindrical holes embedded in narrow and wide transverse trenches. In: Proceedings of ASME turbo expo: power for land, sea, and air conference. 2007; paper no. GT2007.

  13. Khalatov AA, Borisov II, Dashevskiy YY, Kovalenko AS, Shevtsov SV. Flat plate film cooling from a single-row inclined hole embedded in a trench: effect of external turbulence and flow acceleration. Thermogr Aerotech. 2012;20(6):713–9.

    Article  Google Scholar 

  14. Schreivogel P, Abram C, Fond B, StrauBwald M, Beyrau F, Pfitzner M. Simultaneous KHz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes. Int J Heat Mass Transf. 2016;103:390–400.

    Article  CAS  Google Scholar 

  15. Lu Y, Dhungel A, Ekkad SV, Bunker RS. Film cooling measurements for cratered cylindrical inclined holes. J Turbomach. 2009;131:011005-1-12.

    Google Scholar 

  16. Na S, Shih TIP. Increasing adiabatic film cooling effectiveness by using an upstream ramp. J Heat Transf. 2007;129(4):464–71.

    Article  Google Scholar 

  17. Gandhi N, Suresh S. Effect of mist concentration on the cooling effectiveness of a diffused hole mist cooling system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09680-1.

    Article  Google Scholar 

  18. Khodabandeh E, Akbari OA, Akbari S, Taghizadeh A, Pour MS, Ersson M, Jönsson PG. The effects of oil/MWCNT nanofluids and geometries on the solid oxide fuel cell cooling systems: a CFD study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09422.

    Article  Google Scholar 

  19. He Z, Yan Y, Feng S, Li X, Yang Z. Numerical study of thermal enhancement in a micro-heat sink with ribbed pin-fin arrays. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09739-z.

    Article  Google Scholar 

  20. Ajarostaghi SSM, Delavar MA, Poncet S. Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. J Therm Anal Calorim. 2020;140:1321–39. https://doi.org/10.1007/s10973-019-08386-3.

    Article  CAS  Google Scholar 

  21. Nizetic S, Marinic-Kragic I, Grubišić-Čabo F, Papadopoulos AM, Xie G. Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09410-7.

    Article  Google Scholar 

  22. Hosseinalipour SM, Rashidzadeh S, Moghimi M, Esmailpour K. Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09225-1.

    Article  Google Scholar 

  23. Moazzez AF, Najafi G, Ghobadian B, Hosseini SS. Numerical simulation and experimental investigation of air cooling system using thermoelectric cooling system. J Therm Anal Calorim. 2019;139:2553–63. https://doi.org/10.1007/s10973-019-08899-x.

    Article  CAS  Google Scholar 

  24. Xim C, Lu L, Liu X. Numerical analysis of thermal characteristics of transpiration cooling with coolant phase change. J Therm Anal Calorim. 2018;131(2):1747–55.

    Article  CAS  Google Scholar 

  25. Ghasemian M, Ramiar A, Ranjbar AA. Numerical investigation of boiling heat transfer in a quenching process of jet impingement considering solid temperature distribution. J Therm Anal Calorim. 2019;136(6):2409–20.

    Article  CAS  Google Scholar 

  26. Sinha AK, Bogard DG, Crawford ME. Film cooling effectiveness downstream of a single row hole with a variable density ratio. J Turbomach. 1991;113:442–9.

    Article  Google Scholar 

  27. Gritsch M, Schulz A, Wittig S. Adiabatic wall effectiveness measurements of film cooling holes with expanded exits. J Turbomach. 1998;120:549–56.

    Article  Google Scholar 

  28. Lutum E, Johnson BV. Influence of the hole length to diameter ratio on film cooling with cylindrical holes. J Turbomach. 1998;121:209–16.

    Article  Google Scholar 

  29. Hale CA, Plesnaik MW, Ramadyani S. Film cooling effectiveness for short film cooling holes fed by a narrow plenum. J Turbomach. 2000;122:553–7.

    Article  Google Scholar 

  30. Bell CM, Hamakawab H, Ligrani PM. Film cooling from shaped holes. J Heat Transf. 2000;122:224–32.

    Article  CAS  Google Scholar 

  31. Schulz A. Infrared thermography as applied to film cooling of gas turbine components. Meas Sci Technol. 2000;11:948–56.

    Article  CAS  Google Scholar 

  32. Walters DK, Leylek JH. A detailed analysis of film cooling physics: part I—streamwise injection with cylindrical holes. J Turbomach. 2000;122:103–12.

    Google Scholar 

  33. Cho HH, Kang SG, Rhee DH. Heat/Mass transfer measurement within a film cooling hole of the square and rectangular cross-section. J Turbomach. 2001;123:806–14.

    Article  Google Scholar 

  34. Mayhew JE, Baughn JW, Byerley AR. The effect of freestream turbulence on film cooling adiabatic effectiveness. Int J Heat Fluid Flow. 2003;24:669–79.

    Article  Google Scholar 

  35. Lu X, Jiang P, Sugishita H, Uechi H, Suenaga K. Conjugate heat transfer analysis of film cooling flows. J Therm Sci. 2006;15(1):85–91.

    Article  Google Scholar 

  36. Azzi A, Jubran BA. Numerical modeling of film cooling from converging slot-hole. Heat Mass Transf. 2007;43:381–8.

    Article  Google Scholar 

  37. Koc I, Islamoglu Y, Akdag U. Investigation of film cooling effectiveness and heat transfer coefficient for rectangular holes with two rows. Aircraft Eng Aerosp Technol. 2009;81(2):106–17.

    Article  Google Scholar 

  38. Kim SI, Hassan I. Unsteady simulations of a film cooling flow from an inclined cylindrical jet. J Thermophys Heat Transf. 2010;24(1):145–56.

    Article  CAS  Google Scholar 

  39. Foroutan H, Yavuzkurt S. Numerical investigation of near field region of film cooling jets under high freestream turbulence: application of RANS and hybrid URANS/large eddy simulation models. J Heat Transf. 2015;137:0110701-1-12.

    Google Scholar 

  40. Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Therm Spray Technol. 2008;17:199–213.

    Article  CAS  Google Scholar 

  41. Goswami B, Ray AK, Sahay SK. Thermal barrier coating system for gas turbine application—a review. High Temp Mater Process (London). 2004;23(2):73–92.

    Article  CAS  Google Scholar 

  42. Bunker RS. A review of shaped hole turbine film hole technology. J Heat Transf. 2005;127:441–53.

    Article  Google Scholar 

  43. Bogard DG, Thole KA. Gas turbine film cooling. J Propuls Powder. 2006;22(2):249–70.

    Article  Google Scholar 

  44. Bunker RS. Film cooling effectiveness due to discrete holes within a transverse surface slot. In: Proceedings of ASME turbo expo, The Netherlands; 2002. Paper No.: GT- 2002-30178.

  45. Zhang DH, Sun L, Chen QY, Lin M, Zeng M, Wang QW. Film cooling from a row of holes with both ends embedded in transverse slots. IN: Proceedings of ASME turbo expo: power for land, sea, and air conference, Germany; 2008. Paper no. GT2008-51501.

  46. Sundaram N, Thole KA. Bump and trench modifications to film-cooling holes at the vane end-wall junction. J Turbomach. 2008;130:041013.

    Article  Google Scholar 

  47. Zuniga HA, Kapat JS. Effect of the increasing pitch to diameter ratio on the film cooling effectiveness of shaped and cylindrical holes embedded in trenches. In: Proceedings of ASME turbo expo: power for land, sea and air conference, Florida; 2009. Paper no. GT2009-60080.

  48. Bernier BC, Nguyen CQ, Zuniga H, Rick lick M, Kapat JS. A study on film cooling uniformity effectiveness trends for various coolant hole geometries. In: Proceedings of AIAA joint propulsion conference & exhibit, Colorado; 2009. Paper no.: AIAA 2009-5102.

  49. Harrison KL, Dorrington JR, Dees JE, Bogard DG, Bunker RS. Turbine airfoil net heat flux reduction with cylindrical holes embedded in the transverse trench. J Turbomach. 2009;131:011012.

    Article  Google Scholar 

  50. Islami SB, Tabrizi SPA, Jubran BA, Esmaeilzadeh E. Influence of trenched shaped holes on turbine blades leading edge film cooling. Heat Transf Eng. 2010;31(2):889–906.

    Article  CAS  Google Scholar 

  51. Peng W, Jiang PX. Experimental and numerical study of film cooling with internal coolant cross-flow effects. Exp Heat Transf. 2012;25:282–300.

    Article  Google Scholar 

  52. Barigozzi G, Franchini G, Perdichizzi A, Ravelli S. Effect of trenched holes on film cooling of a contoured end wall nozzle vane. J. Turbomach. 2012;134:041009-1-10.

    Google Scholar 

  53. Kross B, Pfitzner M. Numerical and experimental investigation of the film cooling effectiveness and temperature fields behind a novel trench configuration at high blowing ratio. In: Proceedings of ASME turbo expo, Denmark; 2009. Paper no. GT2012-68125.

  54. Islami SB, Jubran BA. The effect of turbulence intensity on film cooling of a gas turbine blade from trenched shaped holes. Heat Mass Transf. 2012;48:831–40.

    Article  Google Scholar 

  55. Chandran PMD, Halder P, Panda RK, Prasad BVSSS. A comparative study of film cooling effectiveness on a flat plate with adiabatic and conjugate conditions for different hole shapes. In: Proceedings of ASME turbo expo, Denmark; 2012. Paper no. GT2012-69142.

  56. Oguntade HI, Andrews GE, Burns AD, Ingham DB, Pourkashanian M. Improved trench film cooling with shaped trench outlets. J Turbomach. 2013;135:021009-1-10.

    Google Scholar 

  57. Abdala AMM, Zheng Q, Elwekeel FNM, Dong P. Computational film cooling effectiveness of dual trench configuration on a flat plate at moderate blowing ratios. J Mar Sci Appl. 2013;12:208–18.

    Article  Google Scholar 

  58. Albert JE, Bogard DG. Measurement of adiabatic film and overall cooling effectiveness on a turbine vane pressure side with a trench. J Turbomach. 2013;135:051007-1-11.

    Google Scholar 

  59. Antar A, Qun Z, Fifi E. Aerodynamic analysis and validation by using three turbulence models for narrow trench configurations. Heat Mass Transf. 2013;50(5):603–16.

    Article  Google Scholar 

  60. Lee KD, Kim KY. Film cooling performance of cylindrical holes embedded in a transverse trench. Num Heat Transf. 2014;65:127–43.

    Article  CAS  Google Scholar 

  61. Zhang W, Zhou S, Wu Z, Li G, Kou Z. Film cooling mechanism of the combined hole and saw-tooth slot. Int J Turbo Jet Eng. 2016. https://doi.org/10.1515/tjj-2017-0014.

    Article  Google Scholar 

  62. Zhang BI, Zhang L, Zhu H, Wei JS, Fu Z, Yao C. Numerical study on film cooling characteristics of c3x vane with wave trench hole. In: Proceedings of ASME turbo expo, Norway; 2018. Paper no. GT2018-75173.

  63. Schreivogel P, Pfitzner M. Heat transfer measurements downstream of trenched film cooling holes using a novel optical two-layer measurement technique. J Turbomach. 2016;138:031003-1-9.

    Article  Google Scholar 

  64. Hou R, Wen F, Luo Y, Tang X, Wang S. Large-eddy simulation of film cooling flow from round and trenched holes. Int J Heat Mass Transf. 2019;144:118631-1-13.

    Article  Google Scholar 

  65. He W, Deng Q, Zhou W, Gao T, Feng Z. Film cooling and aerodynamic performance of a turbine nozzle guide vane with trenched cooling holes. Appl Therm Eng. 2019;150:150–63.

    Article  Google Scholar 

  66. Huang K, Zhang J, Wang C, Shan Y. Numerical evaluation of single row trenched hole film cooling performances on turbine guide vane under engine representative conditions. Num Heat Transf A. 2019. https://doi.org/10.10180/10407782.2019.1627830.

    Article  Google Scholar 

  67. Kim JH, Kim KY. Surrogate- based optimization of a cratered cylindrical hole to enhance film cooling effectiveness. J Therm Sci Technol. 2016;11(2):1–14.

    Google Scholar 

  68. Yang X, Feng Z, Simon TW. Conjugate heat transfer modeling of a turbine vane end wall with thermal barrier coatings. Aeronaut J. 2019;123(1270):1959–81.

    Article  Google Scholar 

  69. Fu JL, Bai LC, Zhang C, Ju PF. Film cooling performance for cylindrical holes embedded in contoured craters: effect of the crater depth. J Appl Mech Tech Phys. 2019;60(6):1068–76.

    Article  Google Scholar 

  70. Dorrington JR, Bogard DG, Bunker RS. Film effectiveness performance for coolant holes embedded in various shallow trench and crater depressions. In: Proceedings of ASME turbo expo: power for land, sea and air conference, Florida; 2007. Paper no. GT2007-27992.

  71. Davidson FT, Kistenmacher DA, Bogard DG. A study of deposition on a turbine vane with a thermal barrier coating and various film cooling geometries. J Turbomach. 2014;136:041009-1-11.

    Article  Google Scholar 

  72. Kalghatgi P, Acharya S. Improved film cooling effectiveness with a round film cooling hole embedded in a contoured crater. J Turbomach. 2015;137:101006-1-10.

    Article  Google Scholar 

  73. Barigozzi G, Franchini G, Perdichizzi A. The effect of an upstream ramp on cylindrical and fan-shaped hole film cooling—part I: aerodynamic results. In: Proceedings of ASME turbo expo conference, Montreal, Canada; 2007. Paper no. GT2007-27077.

  74. Halder P, Samad A. Enhancement of film cooling effectiveness using an upstream ramp. In: Proceedings of ASME gas turbine india conference, Mumbai, India; 2012. Paper no. GTIndia 2012-9672.

  75. Yang W, Pu J, Wang J. The combined effects of an upstream ramp and swirling coolant flow on film cooling characteristics. J Turbomach. 2016;138:111008-1-10.

    Article  Google Scholar 

  76. Abdala AMM, Elwekkel FNM. An Influence of novel upstream steps on film cooling performance. Int J Heat Mass Transf. 2016;93:86–96.

    Article  Google Scholar 

  77. Zhang F, Wang X, Li J. The effects of upstream steps with unevenly slantwise distributed height on rectangular hole film cooling performance. Int J Heat Mass Transf. 2016;102:1209–21.

    Article  CAS  Google Scholar 

  78. Zheng D, Wang X, Zhang F, Yuan Q. Numerical investigation on the effects of the divided steps on film cooling performance. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.01.

    Article  Google Scholar 

  79. Quinzong X, Qiang D, Pei W, Junqiang Z. Computational study of film cooling and flow fields on a stepped vane end wall with a row of the cylindrical holes and interrupted slot injections. Int J Heat Mass Transf. 2019;134:796–806.

    Article  Google Scholar 

  80. An B, Liu J, Zhang C, Zhou S. Film cooling of the cylindrical hole with a downstream short crescent-shaped block. J Heat Transf. 2013;135:031702-1-9.

    Article  CAS  Google Scholar 

  81. Zhou W, Hu H. Improvements of film cooling effectiveness by using barchan dune shaped ramps. Int J Heat Mass Transf. 2016;103:443–56.

    Article  Google Scholar 

  82. Zhou W, Hu H. A novel sand dune inspired design for improved film cooling performance. Int J Heat Mass Transf. 2017;110:908–20.

    Article  Google Scholar 

  83. Choi JU, Kim GM, Lee HC, Kwak JS. Optimization of the Coanda bumps to improve the film cooling effectiveness of an inclined slot. Int J Therm Sci. 2019;139:376–86.

    Article  Google Scholar 

  84. Shinn AF, Vanka SP. Large-eddy simulations of film cooling flow with a micro ramp vortex generator. J Turbomach. 2013;135:011004-1-13.

    Article  Google Scholar 

  85. Sarkar S, Ranakoti G. Effects of vortex generators on film cooling effectiveness. J Turbomach. 2016. https://doi.org/10.1115/1.4035275.

    Article  Google Scholar 

  86. Song L, Zhang C, Song Y, Li J, Feng Z. Experimental investigations on the effects of inclination angle and blowing ratio on the flat plate film cooling enhancement using vortex generator downstream. Appl Therm Eng. 2017;119:573–84.

    Article  Google Scholar 

  87. Akwaboa S, Mensah P, Beyazoglu E, Diwan R. thermal modeling and analysis of a thermal barrier coating structure using non-fourier heat conduction. J. Heat Transf. 2012;134:111301-1-11.

    Article  Google Scholar 

  88. Li G, Yang P, Zhang W, Wu Z, Kou Z. Enhanced film cooling performance of a row of cylindrical holes embedded in the sawtooth slot. Int J Heat Mass Transf. 2019;132:1137–51.

    Article  Google Scholar 

  89. Mensch A, Thole KA, Craven BA. Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating. J Turbomach. 2014;136(12):121003-1-11.

    Article  Google Scholar 

  90. Jovanovic MB, Lange HCD, Steenhoven AAV. Effect of hole imperfections on adiabatic film cooling effectiveness. Int J Heat Fluid Flow. 2008;29:377–86.

    Article  CAS  Google Scholar 

  91. Yang CF, Zhang JZ. Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs. Exp Therm Fluid Sci. 2012;37:113–20.

    Article  CAS  Google Scholar 

  92. Huang K, Zhang J, Tan X, Shan Y. Experimental study on film cooling performance of imperfect holes. Chin J Aeronaut. 2018. https://doi.org/10.1016/j.cja.2018.04.001.

    Article  Google Scholar 

  93. Ligrani PM, Wiggle JM, Ciriello SW. Film cooling from holes with compound angle orientations: part 2—results downstream of a single row of holes with 6d spanwise spacing. J Heat Transf. 1994;116:353–62.

    Article  CAS  Google Scholar 

  94. Lee SW, Kim YB, Lee JS. Flow characteristics and aerodynamic losses of film cooling jets with compound angle orientations. J Turbomach. 1997;119:310–9.

    Article  Google Scholar 

  95. Brittingham RA, Leylek JH. A detailed analysis of film cooling physics: part IV-compound angle injection with shaped holes. J Turbomach. 2000;122:133–45.

    Article  Google Scholar 

  96. Gartshore I, Salcudean M, Hassan I. Film cooling injection hole geometry: hole shape comparison for compound cooling orientation. AIAA J. 2001;39(8):1493–9.

    Article  CAS  Google Scholar 

  97. Heneka C, Schulz A, Bauer H, Heselhaus A, Crawford ME. Film cooling performance of sharp edge diffuser holes with lateral inclination. J Turbomach. 2012;134:041015-1-8.

    Article  Google Scholar 

  98. Wang J, Gu C, Sunden B. Investigation of film cooling and its non-uniform distribution for the conjugate heat transfer passage with a compound inclined angled jet. Numer Heat Transf A. 2015;69(1):1–17.

    Google Scholar 

  99. Schmidt DL, Sen B, Bogard DG. Film cooling with compound angle holes: adiabatic effectiveness. J Turbomach. 1996;118:807–13.

    Article  Google Scholar 

  100. Lee HW, Park JJ, Lee JS. Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations. Int J Heat Mass Transf. 2002;45:145–56.

    Article  Google Scholar 

  101. Nasir H, Ekkad SV, Acharya S. Effect of compound injection on flat surface film cooling with large streamwise injection angle’. Exp Therm Fluid Sci. 2001;25:23–9.

    Article  Google Scholar 

  102. Goldstein RJ, Jin P. Film cooling downstream of a row discrete holes with compound angle. J Turbomach. 2001;123(2):222–30.

    Article  Google Scholar 

  103. Gao Z, Narzary DP, Han JC. Film cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes. J Turbomach. 2009;131:011019-1-11.

    Google Scholar 

  104. Aga V, Abhari RS. Influence of flow structure on compound angled film cooling effectiveness and heat transfer. J Turbomach. 2011;133:031029-1-12.

    Article  Google Scholar 

  105. Gao W, Yue Z, Li L, Zhao Z, Tong F. Numerical simulation of film cooling with the compound angle of the blade leading-edge model for the gas turbine. Int J Heat Mass Transf. 2017;115:839–55.

    Article  Google Scholar 

  106. Li W, Lu X, Li X, Ren J, Jiang H. High-resolution measurements of film cooling performance of simple and compound angle cylindrical holes with varying hole length to diameter ratio—part-I: adiabatic effectiveness. Int J Therm Sci. 2018;124:146–61.

    Article  Google Scholar 

  107. Haydt S, Lynch S. Cooling effectiveness for a shaped film cooling hole at a range of compound angles. J Turbomach. 2019;141:041005-1-14.

    Article  Google Scholar 

  108. Shailendra N. Basic aspects of the gas turbine. Heat exchangers: design, experiments, and simulation. Intech. 2017. http://dx.doi.org/10.5772/67323.

  109. Kistenmacher DA, Davidson FT, Bogard DG. Realistic trench film cooling with a thermal barrier coating and deposition. J Turbomach. 2014;136:091002-1-12.

    Article  Google Scholar 

  110. Pakhomov MA, Terekhov VI, Khalatov AA, Borisov II. Film cooling effectiveness with injection through circular holes embedded in a transverse trench. Thermogr Aeromech. 2015;22(3):330–8.

    Google Scholar 

  111. Barigozzi G, Franchini G, Perdichizzi A. The effect of an upstream ramp on cylindrical and fan-shaped hole film cooling—part II: adiabatic effectiveness results. In: Proceedings of ASME turbo expo conference, Montreal, Canada; 2007. Paper no. GT2007-27079.

  112. AL-Jabery FFH. Enhancement of film cooling performance by using ramped hole injection. Ph.D. thesis. 2014. University of Technology, Iraq.

  113. Kawabata H, Funazaki K, Nakata R, Takahashi D. Experimental and numerical investigations of effects of flow control devices upon flat plate film cooling performance. J Turbomach. 2014;136:061021-1-11.

    Article  Google Scholar 

  114. Nemdili F, Azzi A, Jubran BA. Numerical investigation of the influence of a hole imperfection on film cooling effectiveness. Int J Num Met Heat Fluid Flow. 2011;21(1):46–60.

    Article  Google Scholar 

  115. Cheng-Xiong P, Jing-zhou Z, Ke-nan H. Numerical investigation of partial blockage effect on film cooling effectiveness. Math Probl Eng. 2014. https://doi.org/10.1115/2014/167193.

    Article  Google Scholar 

  116. Ekkad SV, Zapata D, Han JC. Heat transfer coefficients over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method. J Turbomach. 1997;119:581–6.

    Google Scholar 

  117. Mcgovern KT, Leylek JH. A detailed analysis of film cooling physics: part ii—compound-angle injection with cylindrical holes. J Turbomach. 2000;122:113–21.

    Article  Google Scholar 

  118. Taslim ME, Khanicheh A. Film effectiveness downstream of a row of compound angle film holes. J Heat Transf. 2005;127(4):434–40.

    Article  Google Scholar 

  119. Sharma V, Garg A. Numerical investigation of effects of compound angle and length to diameter ratio on adiabatic film cooling effectiveness. Cornell Research Repository. 2014; https://arxiv.org/abs/1405.0560V1.

Download references

Acknowledgements

The first author gratefully acknowledges the Department of Science and Technology, Government of India, for the award of DST INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krishna Anand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Anand, V.G., Parammasivam, K.M. Thermal barrier coated surface modifications for gas turbine film cooling: a review. J Therm Anal Calorim 146, 545–580 (2021). https://doi.org/10.1007/s10973-020-10032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10032-2

Keywords

Navigation