Skip to main content
Log in

Performance evaluation of a U-shaped heat exchanger containing hybrid Cu/CNTs nanofluids: experimental data and modeling using regression and artificial neural network

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current research, viscosity and thermal conductivity of hybrid Cu/CNTs water-based nanofluids were investigated at various concentrations of nanofluid and temperatures. The results demonstrated that although increasing the concentration leads to enhance the thermal conduction coefficient and viscosity, the increase in temperature followed the expected results of increasing thermal conductivity and decreasing viscosity. For the objective of evaluating the function of the U-shaped heat exchanger system, exergy variations concerning different operation conditions of three nanofluid concentrations (0.1, 0.2, and 0.5%) and three different pitches of the spiral strip (2, 3, and 4) were considered. The results showed that in all cases, a rise in Reynolds number would increase heat transfer. Additionally, the presence of a spiral strip resulted in much more increase in turbulent flow; subsequently, an impressive effect on the thermal performance can be obtained. The findings of the exergy efficiency for the U-shaped heat exchanger using hybrid nanofluid in different scenarios indicated that it is improved to 9–17%, and exergy improvement with the ratio of 4 is 23–26% and, for the ratio of 4, obtained 10–12.7%. For predicting the exergy efficiency of the heat exchanger, the designed neural network presented a three-layer model (one input layer, one hidden layer, and one output layer) containing seven neurons in the hidden layer and the leading algorithm of backpropagation Levenberg–Marquardt that anticipates the behavior of the system with a precision of R2 = 0.9967. The investigation of error distribution indicated that the model follows a normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

C p :

Specific heat (kJ kg−1 °C−1)

D :

Tube diameter (m)

d :

Nanoparticle diameter (m)

C c :

Cooled fluid specific heat (kJ kg−1 °C−1)

C h :

Cooling fluid specific heat (kJ kg−1 °C−1)

E :

Exergy (kJ kg−1)

E c :

Cooled flow exergy (kJ kg−1)

E h :

Cooling flow exergy (kJ kg−1)

F :

Friction factor (dimensionless)

h :

Convective heat transfer coefficient (W m−2 oC−1)

\(h_{\text{E}}\) :

Enhanced convective heat transfer coefficient (W m−2K−1)

\(h_{\text{NE}}\) :

Non-enhanced convective heat transfer coefficient (W m−2K−1)

k :

Thermal conductivity (W m−1 oC−1)

L :

Tube length (m)

m :

Mass flow rate (kg s−1)

Nu:

Nusselt number (dimensionless)

Pr:

Prandtl number (dimensionless)

Q :

Heat transfer rate (W)

Re:

Reynolds number (dimensionless)

S :

Entropy (kJ kg−1 k−1)

T :

Temperature (°C)

U :

Overall heat transfer coefficient (W m−2 oC−1)

V :

Velocity (m2s−1)

μ :

Dynamic viscosity (kg ms−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\rho\) :

Density (kg m−3)

\(\vartheta\) :

Kinematic viscosity (m2 s−1)

\(\varphi_{\text{V}}\) :

Nanoparticle volume concentration (dimensionless)

\(\eta\) :

Performance evaluation analysis

Λ:

Number of centers

θ m :

Largest center-to-center distance

ɷ j :

Mass vectors

ε :

Exergy efficiency

c:

Cooled fluid

g:

Gas

h:

Cooling fluid

f:

Fluid

np:

Nanoparticle

in:

Inlet

m:

Mean

ave:

Average

nf:

Nanofluid

o:

Outside

bf:

Bulk of the film

p:

Particles

w:

Wall

ANN:

Artificial neural network

BP-LM:

Back-propagation Levenberg–Marquardt

CNT:

Carbon nanotube

HTRI:

Heat transfer research Inc.

MLP:

Multilayer perceptron

THW:

Transient hot wire

TR:

Twisted ratio

TD:

Diameter ratio of twisted tape

RBF:

Radial basis function

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray powder diffraction

References

  1. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.124127.

    Article  Google Scholar 

  2. Ahmadi MH, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, et al. Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of artificial neural networks analysis integrated with genetic algorithm. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.124008.

    Article  Google Scholar 

  3. Tayebi T, Chamkha AJ, Djezzar M. Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall. Sci Iran. 2019;26:2770–83. https://doi.org/10.24200/sci.2018.21069.

    Article  Google Scholar 

  4. Chamkha AJ, Tayebi T. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J Therm Anal Calorim. 2020;139:2165–79.

    Article  Google Scholar 

  5. Benkhedda M, Boufendi T, Tayebi T, Chamkha AJ. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J Therm Anal Calorim. 2020;140:411–25.

    Article  CAS  Google Scholar 

  6. Dogonchi AS, Waqas M, Ganji DD. Shape effects of copper-oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. Int Commun Heat Mass Transf. 2019;107:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.014.

    Article  CAS  Google Scholar 

  7. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO–H2O nanofluid. J Braz Soc Mech Sci Eng. 2019;41:1–13. https://doi.org/10.1007/s40430-019-1752-5.

    Article  CAS  Google Scholar 

  8. Dogonchi AS, Chamkha AJ, Hashemi-Tilehnoee M, Seyyedi SM, Rizwan-Ul-Haq, Ganji DD. Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source. J Cent South Univ. 2019;26:1161–71. https://doi.org/10.1007/s11771-019-4078-7.

    Article  CAS  Google Scholar 

  9. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 2019;9:25103. https://doi.org/10.1063/1.5086247.

    Article  CAS  Google Scholar 

  10. Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab J Sci Eng. 2019;44:7919–31. https://doi.org/10.1007/s13369-019-03956-x.

    Article  CAS  Google Scholar 

  11. Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2020;139:661–71. https://doi.org/10.1007/s10973-019-08408-0.

    Article  CAS  Google Scholar 

  12. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transf. 2019;132:473–83. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124.

    Article  CAS  Google Scholar 

  13. Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Seyyedi SM, Animasaun IL, Ganji DD. The influence of different shapes of nanoparticle on Cu–H2O nanofluids in a partially heated irregular wavy enclosure. Phys A Stat Mech Appl. 2020;540:123034. https://doi.org/10.1016/j.physa.2019.123034.

    Article  CAS  Google Scholar 

  14. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. 1993;7:227–33. https://doi.org/10.2963/jjtp.7.227.

    Article  CAS  Google Scholar 

  15. Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. MRS Proc. 1996;457:3. https://doi.org/10.1557/PROC-457-3.

    Article  Google Scholar 

  16. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60. https://doi.org/10.1080/01457630701850851.

    Article  CAS  Google Scholar 

  17. Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf. 2010;132:102402. https://doi.org/10.1115/1.4001304.

    Article  Google Scholar 

  18. Rusconi R, Rodari E, Piazza R. Optical measurements of the thermal properties of nanofluids. Appl Phys Lett. 2006;89:261916. https://doi.org/10.1063/1.2425015.

    Article  CAS  Google Scholar 

  19. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG. Thermal conductivity of nanoparticle suspensions. J Appl Phys. 2006;99:84308. https://doi.org/10.1063/1.2189933.

    Article  CAS  Google Scholar 

  20. Venerus DC, Kabadi MS, Lee S, Perez-Luna V. Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys. 2006;100:94310. https://doi.org/10.1063/1.2360378.

    Article  CAS  Google Scholar 

  21. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:94312. https://doi.org/10.1063/1.3245330.

    Article  CAS  Google Scholar 

  22. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567. https://doi.org/10.1115/1.1571080.

    Article  CAS  Google Scholar 

  23. Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322:3895–901. https://doi.org/10.1016/J.JMMM.2010.08.016.

    Article  CAS  Google Scholar 

  24. Yang B. Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf. 2008;130:42408. https://doi.org/10.1115/1.2789721.

    Article  CAS  Google Scholar 

  25. Ghalambaz M, Mehryan SAM, Izadpanahi E, Chamkha AJ, Wen D. MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J Therm Anal Calorim. 2019;138:1723–43. https://doi.org/10.1007/s10973-019-08258-w.

    Article  CAS  Google Scholar 

  26. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J Therm Anal Calorim. 2020;139:2321–36. https://doi.org/10.1007/s10973-019-08617-7.

    Article  CAS  Google Scholar 

  27. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137:965–82. https://doi.org/10.1007/s10973-019-08012-2.

    Article  CAS  Google Scholar 

  28. Venkateshan T, Eswaramoorthi M. A review on performance of heat exchangers with different configurations. Int J Res Appl Sci Eng Technol. 2015;3(VII):2321–9653.

    Google Scholar 

  29. Zhou G, Zhu L-Y, Zhu H, Tu S, Lei J. Prediction of temperature distribution in shell-and-tube heat exchangers. Energy Procedia. 2014;61:799–802. https://doi.org/10.1016/J.EGYPRO.2014.11.968.

    Article  Google Scholar 

  30. Saneipoor P, Naterer GF, Dincer I. Transient temperature response of variable flow heat exchangers in a marnoch heat engine. J Heat Transf. 2014;136:111801. https://doi.org/10.1115/1.4028176.

    Article  Google Scholar 

  31. Eiamsa-ard P, Piriyarungroj N, Thianpong C, Eiamsa-ard S. A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators. Case Stud Therm Eng. 2014;3:86–102. https://doi.org/10.1016/J.CSITE.2014.04.002.

    Article  Google Scholar 

  32. Chamoli S. A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles. Case Stud Therm Eng. 2015;5:59–69. https://doi.org/10.1016/J.CSITE.2015.01.001.

    Article  Google Scholar 

  33. Abed AM, Sopian K, Mohammed HA, Alghoul MA, Ruslan MH, Mat S, et al. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids. Case Stud Therm Eng. 2015;5:13–23. https://doi.org/10.1016/J.CSITE.2014.11.001.

    Article  Google Scholar 

  34. Al-Shamani AN, Sopian K, Mohammed HA, Mat S, Ruslan MH, Abed AM. Enhancement heat transfer characteristics in the channel with Trapezoidal rib–groove using nanofluids. Case Stud Therm Eng. 2015;5:48–58. https://doi.org/10.1016/J.CSITE.2014.12.003.

    Article  Google Scholar 

  35. Chandraprabu V, Sankaranarayanan G, Iniyan S, Suresh S. Heat transfer enhancement characteristics of Al2O3/water and CuO/water nanofluids in a tube in tube condenser fitted with an air conditioning system—an experimental comparison. J Therm Sci Eng Appl. 2014;6:41004. https://doi.org/10.1115/1.4027396.

    Article  CAS  Google Scholar 

  36. López Paniagua I, Rodríguez Martín J, González Fernandez C, Jiménez Alvaro Á, Nieto Carlier R, López Paniagua I, et al. A new simple method for estimating exergy destruction in heat exchangers. Entropy. 2013;15:474–89. https://doi.org/10.3390/e15020474.

    Article  Google Scholar 

  37. Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A. Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf. 2014;50:8–14. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2013.11.006.

    Article  CAS  Google Scholar 

  38. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf. 2019;104:33–40. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2019.02.002.

    Article  CAS  Google Scholar 

  39. Mosavati B, Mosavati M, Kowsary F. Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace. Int Commun Heat Mass Transf. 2013;45:130–6. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.011.

    Article  Google Scholar 

  40. Mosavati B, Mosavati M, Kowsary F. Inverse boundary design solution in a combined radiating-free convecting furnace filled with participating medium containing specularly reflecting walls. Int Commun Heat Mass Transf. 2016;76:69–76. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.029.

    Article  Google Scholar 

  41. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Ganji DD. Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. Int Commun Heat Mass Transf. 2020;110:104398. https://doi.org/10.1016/j.icheatmasstransfer.2019.104398.

    Article  Google Scholar 

  42. Seyyedi SM, Dogonchi AS, Ganji DD, Hashemi-Tilehnoee M. Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J Therm Anal Calorim. 2019;138:1607–21. https://doi.org/10.1007/s10973-019-08130-x.

    Article  CAS  Google Scholar 

  43. Seyyedi SM, Dogonchi AS, Nuraei R, Ganji DD, Hashemi-Tilehnoee M. Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field. Eur Phys J Plus. 2019;134:1–20. https://doi.org/10.1140/epjp/i2019-12623-1.

    Article  Google Scholar 

  44. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Asghar Z, Waqas M, Ganji DD. A computational framework for natural convective hydromagnetic flow via inclined cavity: an analysis subjected to entropy generation. J Mol Liq. 2019;287:110863. https://doi.org/10.1016/j.molliq.2019.04.140.

    Article  CAS  Google Scholar 

  45. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Ganji DD. Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114789.

    Article  Google Scholar 

  46. Hazbehian M, Mohammadiun M, Maddah H, Alizadeh M. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions. Heat Mass Transf Und Stoffuebertragung. 2016. https://doi.org/10.1007/s00231-016-1915-1.

    Article  Google Scholar 

  47. Mmohammadiun M, Dashtestani F, Alizadeh M. Exergy prediction model of a double pipe heat exchanger using metal oxide nanofluids and twisted tape based on the artificial neural network approach and experimental results. J Heat Transf. 2016. https://doi.org/10.1115/1.4031073.

    Article  Google Scholar 

  48. Alizadeh M, Sadrameli SM. Modeling of thermal cracking furnaces via exergy analysis using hybrid artificial neural network-genetic algorithm. J Heat Transf. 2016. https://doi.org/10.1115/1.4032171.

    Article  Google Scholar 

  49. Hazbehian M, Maddah H, Mohammadiun H, Alizadeh M. Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid. Heat Mass Transf Und Stoffuebertragung. 2016. https://doi.org/10.1007/s00231-016-1764-y.

    Article  Google Scholar 

  50. İpek O, Kılıç B, Gürel B. Experimental investigation of exergy loss analysis in newly designed compact heat exchangers. Energy. 2017;124:330–5. https://doi.org/10.1016/J.ENERGY.2017.02.061.

    Article  Google Scholar 

  51. Ahmadi M, Sadaghiani M, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy. 2018;20:484. https://doi.org/10.3390/e20070484.

    Article  CAS  PubMed Central  Google Scholar 

  52. Al-Rashed AAAA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys A Stat Mech Appl. 2019;521:724–36. https://doi.org/10.1016/J.PHYSA.2019.01.106.

    Article  CAS  Google Scholar 

  53. Guzmán JEV, Hernández-Arrieta I, Vicente W, Salinas-Vazquez M, Martínez-Espinosa E. Non-local entropy evolution in heat exchangers with elliptical and circular tube geometries. Int J Therm Sci. 2018;134:601–11. https://doi.org/10.1016/J.IJTHERMALSCI.2018.08.041.

    Article  Google Scholar 

  54. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2018.07.002.

    Article  CAS  Google Scholar 

  55. Gudivada VN. Cognitive computing: concepts, architectures, systems, and applications. In: Handbook of statistics, vol. 35. Amsterdam: Elsevier; 2016, p. 3–38. https://doi.org/10.1016/bs.host.2016.07.004.

  56. Simon H. Neural networks : a comprehensive foundation. Upper Saddle River: Prentice Hall; 1999.

    Google Scholar 

  57. Ahmadi MH, Baghban A, Ghazvini M, Hadipoor M, Ghasempour R, Nazemzadegan MR. An insight into the prediction of TiO2/water nanofluid viscosity through intelligence schemes. J Therm Anal Calorim. 2019;139:2381–94. https://doi.org/10.1007/s10973-019-08636-4.

    Article  CAS  Google Scholar 

  58. Zendehboudi A, Wang B, Li X. Robust model to predict the migration ratios of nanoparticles during the pool-boiling process of nanorefrigerants. Int Commun Heat Mass Transf. 2017;84:75–85. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2017.03.012.

    Article  CAS  Google Scholar 

  59. Alizadeh M, Moshirfarahi MM, Rasaie MR. Mathematical and neural network prediction model of three-phase immiscible recovery process in porous media. J Nat Gas Sci Eng. 2014. https://doi.org/10.1016/j.jngse.2014.07.016.

    Article  Google Scholar 

  60. Zarringhalam A, Alizadeh M, Rafiee J, Moshirfarahi MM. Neural network prediction model of three-phase fluids flow in heterogeneous porous media using scaling analysis. J Pet Sci Eng. 2016. https://doi.org/10.1016/j.petrol.2015.09.023.

    Article  Google Scholar 

  61. Zendehboudi A, Li X. Robust predictive models for estimating frost deposition on horizontal and parallel surfaces. Int J Refrig. 2017;80:225–37. https://doi.org/10.1016/J.IJREFRIG.2017.05.013.

    Article  Google Scholar 

  62. Du K, Swamy M. Neural networks in a softcomputing framework. London: Springer; 2006. https://doi.org/10.1007/1-84628-303-5.

    Book  Google Scholar 

  63. Ahmadi MH, Tatar A, Seifaddini P, Ghazvini M, Ghasempour R, Sheremet MA. Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches. Numer Heat Transf Part A Appl. 2018;74:1301–22. https://doi.org/10.1080/10407782.2018.1505092.

    Article  CAS  Google Scholar 

  64. Zendehboudi A, Tatar A. Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles. J Mol Liq. 2017;247:304–12. https://doi.org/10.1016/J.MOLLIQ.2017.09.105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Ahmadi or Dieu Tien Bui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Uncertainty analysis

The uncertainty table for different instruments used in experiment is given in Table 4. The maximum possible error for the parameters involved in the analysis is estimated and summarized in Table 5.

Table 4 Uncertainties of instruments and properties
Table 5 Uncertainties of parameters and variables

Reynolds number, Re:

$$\text{Re} = \frac{{4\dot{m}}}{\pi D\mu }, \frac{{U_{\text{Re}} }}{\text{Re}} = \left[ {\left( {\frac{{U_{{{\dot{m}}}} }}{{\dot{m}}}} \right)^{2} + \left( {\frac{{U_{\upmu} }}{\mu }} \right)^{2} } \right]^{{\frac{1}{2}}} = 1.4\%$$

Heat transfer rate of the nanofluid:

$$\begin{aligned} Q_{\text{nf}} & = \dot{m}_{\text{nf}} c_{\text{p,nf}} \left( {T_{\text{out}} - T_{\text{in}} } \right)_{\text{nf}} , \\ \frac{{U_{{{\text{Q}}_{\text{nf}} }} }}{{Q_{\text{nf}} }} & = \left[ {\left( {\frac{{U_{{{\dot{m}}_{\text{nf}} }} }}{{\dot{m}_{\text{nf}} }}} \right)^{2} + \left( {\frac{{U_{{{\text{C}}_{\text{p,nf}} }} }}{{c_{\text{p,nf}} }}} \right)^{2} + \left( {\frac{{U_{{{\text{T}}_{\text{out}} - {\text{T}}_{\text{in}} }} }}{{T_{\text{out}} - T_{\text{in}} }}} \right)^{2} } \right]^{{\frac{1}{2}}} = 0.17\% \\ \end{aligned}$$

at transfer rate of the water:

$$\begin{aligned} Q_{\text{w}} & = \dot{m}_{\text{w}} c_{\text{p,w}} \left( {T_{\text{out}} - T_{\text{in}} } \right)_{\text{w}} , \\ \frac{{U_{{{\text{Q}}_{\text{w}} }} }}{{Q_{\text{w}} }} & = \left[ {\left( {\frac{{U_{\text{w}} }}{{\dot{m}_{\text{w}} }}} \right)^{2} + \left( {\frac{{U_{{{\text{C}}_{\text{p,w}} }} }}{{c_{\text{p,w}} }}} \right)^{2} + \left( {\frac{{U_{{T_{\text{out}} - T_{\text{in}} }} }}{{T_{\text{out}} - T_{\text{in}} }}} \right)^{2} } \right]^{{\frac{1}{2}}} = 0.5\% \\ \end{aligned}$$

Nusselt number, Nu:

$${\text{Nu}} = \frac{hD}{k},\frac{{U_{\text{Nu}} }}{\text{Nu}} = \left[ {\left( {\frac{{U_{\text{h}} }}{h}} \right)^{2} + \left( {\frac{{U_{\text{k}} }}{k}} \right)^{2} } \right]^{{\frac{1}{2}}} = 0.26\%$$

Friction factor, f:

$$f = \frac{\Delta P}{{\left( {\frac{1}{D}} \right)\left( {\frac{{\rho V^{2} }}{2}} \right)}},U_{\text{f}} = \left[ {\left( {\frac{{U_{{\Delta {\text{P}}}} }}{\Delta P}} \right)^{2} + \left( {\frac{{U_{\uprho} }}{\rho }} \right)^{2} + \left( {\frac{{2U_{\text{V}} }}{V}} \right)^{2} } \right]^{{\frac{1}{2}}} = 0.42\%$$

Appendix B

The following table reports the error encountered during repeating the experiments 3 times. The error was calculated as the following (Table 6):

$${\text{MSE}} = \frac{1}{n}\mathop \sum \limits_{{{\text{i}} = 1}}^{n} \left( {Y_{\text{i}} - \hat{Y}_{\text{i}} } \right)^{2}$$

where Y is exergy efficiency and \(\hat{Y}\) is the average of exergetic efficiency.

Table 6 Experimental errors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddah, H., Ghazvini, M., Ahmadi, M.H. et al. Performance evaluation of a U-shaped heat exchanger containing hybrid Cu/CNTs nanofluids: experimental data and modeling using regression and artificial neural network. J Therm Anal Calorim 143, 1503–1521 (2021). https://doi.org/10.1007/s10973-020-09882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09882-7

Keywords

Navigation