Skip to main content
Log in

Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current work, after generating experimental data points for different volume fraction of nanoparticles (\(\phi\)) and different temperatures, an algorithm to find the best neuron number in the hidden layer of artificial neural network (ANN) method is proposed to find the best architecture and then to predict the thermal conductivity (\(k_{\text{nf}}\)) of SiO2/water–ethylene glycol (50:50) nanofluid. This ANN is a feed-forward network with Levenberg–Marquardt for the learning algorithm. Regarding the experimental data points, a third-order function is obtained. In the fitting method, the mean square error is 2.7547e−05, and the maximum value of error is 0.0125. The correlation coefficient of the fitting method is 0.9919. This surface also shows the behavior of nanofluid based on the \(\phi\) and temperatures, and finally, the results of these methods have been compared. It can be seen that for 8 neuron numbers, the correlation coefficient for all outputs of ANN is 0.993861.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/water hybrid Newtonian nanofluid using experimental data. Phys A Stat Mech Appl. 2019;525:741–75.

    Article  CAS  Google Scholar 

  2. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08076-0.

    Article  Google Scholar 

  3. Keyvani M, Afrand M, Toghraie D, Reiszadeh M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. J Mol Liq. 2018;266:211–7.

    Article  CAS  Google Scholar 

  4. Saeedi HA, Akbari M, Toghraie D. An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E: Low-dimensional Syst Nanostruct. 2018;99:285–93.

    Article  CAS  Google Scholar 

  5. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    Article  CAS  Google Scholar 

  6. Deris Zadeh A, Toghraie D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim. 2018;131:1449–61.

    Article  Google Scholar 

  7. Afshari A, Akbari M, Toghraie D, Eftekhari Yazdi M. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15.

    Article  CAS  Google Scholar 

  8. Ahmadi Esfahani M, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12.

    Article  Google Scholar 

  9. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M, Dahari M. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  11. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  12. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.

    Article  CAS  Google Scholar 

  13. Hemmat Esfe M, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.

    Article  CAS  Google Scholar 

  14. Hemmat Esfe M, Yan W, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  CAS  Google Scholar 

  15. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hadi Hajmohammad M. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  CAS  Google Scholar 

  16. Tajik Jamal-Abadi M, Zamzamian AH. Optimization of thermal conductivity of Al2O3 nanofluid by using ANN and GRG methods. Int J Nanosci Nanotechnol. 2013;9:177–84.

    Google Scholar 

  17. Tahani M, Vakili M, Khosrojerdi S. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int Commun Heat Mass Transf. 2016;76:358–65.

    Article  CAS  Google Scholar 

  18. Khosrojerdi S, Vakili M, Yahyaei M, Kalhor K. Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. Int Commun Heat Mass Transf. 2016;74:11–7.

    Article  CAS  Google Scholar 

  19. Hemmat Esfe M, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Hassani Ahangar MR. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81.

    Article  CAS  Google Scholar 

  20. Aghayar R, Maddah H, Faramarzi AR, Mohammadiun H, Mohammadiun M. Comparison of the experimental and predicted data for thermal conductivity of iron oxide nanofluid using artificial neural networks. Nanomed Res J. 2016;1:15–22.

    Google Scholar 

  21. Afrand M, Hemmat Esfe M, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E. 2017;87:242–7.

    Article  CAS  Google Scholar 

  22. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina–water nanofluids. Materials. 2017;10:552–60.

    Article  Google Scholar 

  23. Hemmat Esfe M, Esfandeh S, Afrand M, Rejvani M, Rostamian SH. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnODWCNT nanoparticles for internal combustion engines applications. Appl Therm Eng. 2018;133:452–63.

    Article  Google Scholar 

  24. Aghayari R, Maddah H, Ahmadi MH, Yan W, Ghasemi N. Measurement and artificial neural network modeling of electrical conductivity of CuO/glycerol nanofluids at various thermal and concentration conditions. Energies. 2018;11:1190–8.

    Article  Google Scholar 

  25. Kannaiyan S, Boobalan C, Castro Nagarajan F, Sivaraman S. Modeling of thermal conductivity and density of alumina/silica in water hybrid nanocolloid by the application of artificial neural networks. Chin J Chem Eng. 2019;27:726–36.

    Article  CAS  Google Scholar 

  26. Zendehboudi A, Saidur R. A reliable model to estimate the effective thermal conductivity of nanofluids. Heat Mass Transf. 2019;55:397–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, S., Toghraie, D., Esfahani, M.A. et al. Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network. J Therm Anal Calorim 143, 1119–1128 (2021). https://doi.org/10.1007/s10973-020-09426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09426-z

Keywords

Navigation