Skip to main content
Log in

Effect of silicon-containing nitrogen and phosphorus flame-retardant system on the mechanical properties and thermal and flame-retardant behaviors of corrugated cardboard

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a new designed silicon-containing nitrogen and phosphorus flame-retardant system containing ammonium polyphosphate, modified molecular sieve and methylcellulose was used to prepare the flame-retardant corrugated cardboards (FRCCB). The samples before and after treatment were tested for combustion and thermal stability using vertical burning test (VBT), limiting oxygen index (LOI), cone calorimetric test (CCT) and thermogravimetry (TG). To further analyze the flame-retardant properties of the flame-retardant system, the microstructure, surface elements and functional groups of the materials were characterized by the scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the samples were tested to analyze the effect of flame-retardant treatment on the strength. The VBT and LOI tests showed that the samples after the flame-retardant treatment were able to self-extinguish after ignition, achieving the flame-retardant B-1 grade. The CCT tests showed that the total heat release of treated samples was reduced by 49.90%, and the total smoke production was decreased by 27.64%. TG tests showed that the thermal decomposition temperature of FRCCB decreased but the residual carbon content increased largely. FTIR tests showed that the functional group changed at different temperatures. After flame-retardant treatment, a dense carbon layer was formed on the surface of the treated sample, including N, P, Si and Cu, measured by SEM and EDS. Combining with various characterization methods, the flame-retardant system can retard flame by releasing nonflammable gases, forming covers and catalyzing char formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Abbasi GY, Abbassi BE. Environmental assessment for paper and cardboard industry in Jordan—a cleaner production concept. J Clean Prod. 2004;12:321–6.

    Article  Google Scholar 

  2. Yanez R, Alonso JL, Parajo JC. Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochem. 2004;39:1543–51.

    Article  CAS  Google Scholar 

  3. Goldstein CM. Design of a practical dental chair made of corrugated cardboard. J Am Dent Assoc. 1939;1978(97):996–8.

    Google Scholar 

  4. Biancolini ME, Brutti C. Numerical and experimental investigation of the strength of corrugated board packages. Packag Technol Sci. 2003;16:47–60.

    Article  Google Scholar 

  5. Horrocks AR, Tune M, Cegielka L. The burning behaviour of textiles and its assessment by oxygen-index methods. Text Prog. 1988;18:1–186.

    Article  Google Scholar 

  6. Altarawneh M, Ahmed OH, Jiang Z, Dlugogorski BZ. Thermal recycling of brominated flame retardants with Fe2O3. J Phys Chem A. 2016;120:6039–47.

    Article  CAS  PubMed  Google Scholar 

  7. Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37:532–56.

    Article  CAS  PubMed  Google Scholar 

  8. Darnerud PO. Toxic effects of brominated flame retardants in man and in wildlife. Environ Int. 2003;29:841–53.

    Article  CAS  PubMed  Google Scholar 

  9. Jang J, Chung H, Kim M, Sung H. The effect of flame retardants on the flammability and mechanical properties of paper-sludge/phenolic composite. Polym Test. 2000;19:269–79.

    Article  CAS  Google Scholar 

  10. Liang J, Zhang Y. A study of the flame-retardant properties of polypropylene/Al(OH)(3)/Mg(OH)(2) composites. Polym Int. 2010;59:539–42.

    Article  CAS  Google Scholar 

  11. Boccarusso L, Carrino L, Durante M, Formisano A, Langella A, Memola Capece Minutolo F. Hemp fabric/epoxy composites manufactured by infusion process: improvement of fire properties promoted by ammonium polyphosphate. Compos B Eng. 2016;89:117–26.

    Article  CAS  Google Scholar 

  12. Yang G, Wu W, Dong H, Wang Y, Qu H, Xu J. Synergistic flame-retardant effects of aluminum phosphate and Trimer in ethylene–vinyl acetate composites. J Therm Anal Calorim. 2018;132:919–26.

    Article  CAS  Google Scholar 

  13. Huo S, Liu Z, Wang J. Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine–trione and piperidine. J Therm Anal Calorim. 2020;139:1099–110.

    Article  CAS  Google Scholar 

  14. Sha L, Chen K. Surface modification of ammonium polyphosphate-diatomaceous earth composite filler and its application in flame-retardant paper. J Therm Anal Calorim. 2016;123:339–47.

    Article  CAS  Google Scholar 

  15. Shen M, Chen W, Kuan C, Kuan H, Yang J, Chiang C. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites. Mater Chem Phys. 2016;173:205–12.

    Article  CAS  Google Scholar 

  16. Qian Y, Wei P, Jiang P, Li Z, Yan Y, Ji K. Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol. 2013;82:1–7.

    Article  CAS  Google Scholar 

  17. Tosheva L, Valtchev VP. Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater. 2005;17:2494–513.

    Article  CAS  Google Scholar 

  18. Jiang Y, Zhou W, Jiang M, Liu P, Xu J. Flame retardant study of formalized polyvinyl alcohol fiber coated with melamine formaldehyde resins and the synergistic effect of copper ions. Polym Degrad Stab. 2017;144:331–43.

    Article  CAS  Google Scholar 

  19. Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120:1173–81.

    Article  CAS  Google Scholar 

  20. Wang D, Kan Y, Yu X, Liu J, Song L, Hu Y. In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2–graphene oxide dual-nanosheets: towards reducing fire hazards of unsaturated polyester resin. J Hazard Mater. 2016;320:504–12.

    Article  CAS  PubMed  Google Scholar 

  21. Qiu S, Xing W, Feng X, Yu B, Mu X, Yuen RKK, et al. Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem Eng J. 2017;309:802–14.

    Article  CAS  Google Scholar 

  22. Marsagishvili T, Machavariani M, Tatishvili G, Khositashvili R, Lekishvili N. Ion-exchange processes in the channels of zeolites. Asian J Chem. 2013;25:5605–6.

    Article  CAS  Google Scholar 

  23. Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Appl Catal B. 2010;101:61–7.

    Article  CAS  Google Scholar 

  24. Li T, Yan H, Zheng Y, Zhou A, Zhang M, Huang J, et al. The harmful compositions in fifty-two types of adhesives and analysis for the contents. Chin J Ind Hygiene Occup Dis. 2006;24:169–71.

    CAS  Google Scholar 

  25. Song X. Effect of modified zedlite on fire performance of halogen free polypropylene composites. Beijing: Beijing University of Chemical Technology; 2016.

    Google Scholar 

  26. Xu F, Zhong L, Xu Y, Feng S, Zhang C, Zhang F, et al. Highly efficient flame-retardant kraft paper. J Mater Sci. 2019;54:1884–97.

    Article  CAS  Google Scholar 

  27. Wang N, Liu Y, Liu Y, Wang Q. Properties and mechanisms of different guanidine flame retardant wood pulp paper. J Anal Appl Pyrol. 2017;128:224–31.

    Article  CAS  Google Scholar 

  28. Schollnberger H, Aden J, Scott BR. Respiratory tract deposition efficiencies: evaluation of effects from smoke released in the Cerro Grande forest fire. J Aerosol Med. 2002;15:387–99.

    Article  CAS  PubMed  Google Scholar 

  29. Stefanidou M, Athanaselis S, Spiliopoulou C. Health impacts of fire smoke inhalation. Inhal Toxicol. 2008;20:761–6.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Yu B, Zhou K, Yuen RKK, Gui Z, Hu Y, et al. Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. J Hazard Mater. 2015;293:87–96.

    Article  CAS  PubMed  Google Scholar 

  31. Xu W, Zhang B, Wang X, Wang G, Ding D. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater. 2018;343:364–75.

    Article  CAS  PubMed  Google Scholar 

  32. Gaan S, Sun G. Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol. 2009;84:108–15.

    Article  CAS  Google Scholar 

  33. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  34. Hosoya T, Kawamoto H, Saka S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrol. 2007;78:328–36.

    Article  CAS  Google Scholar 

  35. Wang W, Peng Y, Chen H, Gao Q, Li J, Zhang W. Surface microencapsulated ammonium polyphosphate with beta-cyclodextrin and its application in wood-flour/polypropylene composites. Polym Compos. 2017;38:2312–20.

    Article  CAS  Google Scholar 

  36. Khalili P, Tshai KY, Hui D, Kong I. Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos B Eng. 2017;114:101–10.

    Article  CAS  Google Scholar 

  37. Huang X, Li T, Zhang X, Zheng Z, Yu H. Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply. J Plant Nutr Soil Sci. 2012;175:293–302.

    Article  CAS  Google Scholar 

  38. Maciel AV, Job AE, Da Nova Mussel W, de Brito W, Duarte Pasa VM. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: an integrated process for ZnO reduction and zinc nanostructures fabrication. Biomass Bioenerg. 2011;35:1121–9.

    Article  CAS  Google Scholar 

  39. Shukla A, Basak S, Ali SW, Chattopadhyay R. Development of fire retardant sisal yarn. Cellulose. 2017;24:423–34.

    Article  CAS  Google Scholar 

  40. Rosace G, Castellano A, Trovato V, Iacono G, Malucelli G. Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohyd Polym. 2018;196:348–58.

    Article  CAS  Google Scholar 

  41. Anantha PS, Hariharan K. Structure and ionic transport studies of sodium borophosphate glassy system. Mater Chem Phys. 2005;89:428–37.

    Article  CAS  Google Scholar 

  42. Zhao B, Liu Y, Zhang C, Liu D, Li F, Liu Y. A novel phosphoramidate and its application on cotton fabrics: synthesis, flammability and thermal degradation. J Anal Appl Pyrol. 2017;125:109–16.

    Article  CAS  Google Scholar 

  43. Wang N, Liu Y, Xu C, Liu Y, Wang Q. Acid-base synergistic flame retardant wood pulp paper with high thermal stability. Carbohyd Polym. 2017;178:123–30.

    Article  CAS  Google Scholar 

  44. Li M, Wang S, Han L, Yuan W, Cheng J, Zhang A, et al. Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. J Hazard Mater. 2019;375:61–9.

    Article  CAS  PubMed  Google Scholar 

  45. Colleoni C, Donelli I, Freddi G, Guido E, Migani V, Rosace G. A novel sol–gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surf Coat Technol. 2013;235:192–203.

    Article  CAS  Google Scholar 

  46. Zhang X, Li J, Yang W, Blasiak W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy Fuels. 2011;25:3739–46.

    Article  CAS  Google Scholar 

  47. Wang W, Pan M, Qin Y, Wang L, Song L. Effects of surface acidity on the adsorption desulfurization of Cu(I)Y Zeolites. Acta Phys Chim Sin. 2011;27:1176–80.

    Article  CAS  Google Scholar 

  48. Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Biores Technol. 2009;100:6496–504.

    Article  CAS  Google Scholar 

  49. Morsy FA, El-Sherbiny S. Mechanical properties of coated paper: influence of coating properties and pigment Blends. J Mater Sci. 2004;39:7327–32.

    Article  CAS  Google Scholar 

  50. Scthornvit R. Effect of hydroxypropyl methylcellulose and lipid on mechanical properties and water vapor permeability of coated paper. Food Res Int. 2009;42:307–11.

    Article  CAS  Google Scholar 

  51. Yoon S, Deng Y. Experimental and modeling study of the strength properties of clay-starch composite filled papers. Ind Eng Chem Res. 2007;46:4883–90.

    Article  CAS  Google Scholar 

  52. Peng Z, Chen S. Peeling behavior of a thin-film on a corrugated surface. Int J Solids Struct. 2015;60–61:60–5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Moe Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, China.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31670564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuhui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Liu, J., Xu, B. et al. Effect of silicon-containing nitrogen and phosphorus flame-retardant system on the mechanical properties and thermal and flame-retardant behaviors of corrugated cardboard. J Therm Anal Calorim 145, 2321–2334 (2021). https://doi.org/10.1007/s10973-020-09802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09802-9

Keywords

Navigation