Skip to main content
Log in

Highly efficient flame-retardant kraft paper

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flame resistance of kraft paper was greatly modified by an eco-friendly, phosphorus-containing and reactive flame retardant, ammonium phosphite, which was grafted on kraft paper via pad-bake method. The results showed that the limiting oxygen index of treated kraft paper could increase from 19.1 to 48.2%. The results of vertical flammability tests imply that the char length of treated sample decreased from 210 to 45 mm. Thermogravimetry analysis showed that treated kraft paper had the lower initial decomposition temperature and more residues than control sample. Thermogravimetry analysis/infrared spectrometry indicated that the flammable volatile species of treated kraft paper reduced obviously compared with that of control sample. Fourier transform infrared spectroscopy suggested that ammonium phosphite was grafted on the cellulose molecules by P–O–C covalent bonds and the flame retardant is reactive in condensed phase. Scanning electron microscopy showed that the modification had little effect on the surface of kraft paper and the residual carbonized frame of treated kraft paper retained the fiber shape after combustion. EDX results showed that the flame retardant introduced a large amount of phosphorus and nitrogen into kraft paper. X-ray diffraction indicated that the modification did not significantly affect the crystal structure of kraft paper. And the strength of kraft papers slightly declined after the modification, but it still remained well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kazuaki N, Megumi A, Takayuki T et al (2018) Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: application to esterified bagasse/polypropylene composites. Carbohyd Polym 182:8–14

    Article  Google Scholar 

  2. Francisco MJ, Estrada RHC, Carrillo JG (2018) Water absorption and termite attack on a kraft paper- based composite treated with recycled polystyrene and three commercial resins. Eur J Wood Wood Prod 76:469–479

    Article  Google Scholar 

  3. Pereira CS, Silveira RL, Dupree P et al (2017) Effects of xylan side-chain substitutions on xylan-cellulose interactions and implication for thermal pretreatment of cellulosic biomass. Biomacromol 18:1311–1321

    Article  CAS  Google Scholar 

  4. Dong LY, Zhu YJ (2017) A new kind of fireproof, flexible, inorganic, nanocomposite paper and its application to the protection layer in flame-retardant fiber-optic cables. Chem Eur J 23:4597–4604

    Article  CAS  Google Scholar 

  5. Messmer NR, Guerrini LM, Oliveira MP (2018) Effect of unmodified kraft lignin concentration on the emulsion and miniemulsion copolymerization of styrene with n-butyl acrylate and methacrylic acid to produce polymer hybrid latex. Polym Adv Technol 29:1094–1106

    Article  CAS  Google Scholar 

  6. Lee S, Teramoto Y, Shiraishi N (2002) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J Appl Polym Sci 83(7):1482–1489

    Article  CAS  Google Scholar 

  7. Basak S, Samanta KK, Chattopadhyay SK et al (2015) Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose 22:2767–2776

    Article  CAS  Google Scholar 

  8. Basak S, Patil PG, Shaikh AJ et al (2016) Green coconut shell extract and boric acid: new formulation for making thermally stable cellulosic paper. Cellulose 91:2871–2881

    CAS  Google Scholar 

  9. Shen J, Song ZQ, Qian XR et al (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50:661–666

    Article  CAS  Google Scholar 

  10. Wag SL, Huang JL, Chen FS (2012) Study on Mg–Al hydrotalcites in flame-retardant paper preparation. BioResources 7(1):997–1007

    Google Scholar 

  11. Si YF, Guo ZG (2016) Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. J Colloid Interface Sci 477:74–82

    Article  CAS  Google Scholar 

  12. Mo ZY, Zhao HF, Wu CL et al (2016) Resin microencapsulated ammonium polyphosphate. Paper Paper Making 35(7):35–38

    Google Scholar 

  13. Li XH, Qian XR (2008) Application of Mg–Al hydrotalcite as flame-retardant filler in papermaking. China Pulp Paper 27(12):16–19

    Google Scholar 

  14. An XH, Qian XR, Long YF (2007) Preparation of flame retardant paper based on in situ synthesis of Mg-Al hydrotalcites. China Pulp Paper 26(8):1–5

    CAS  Google Scholar 

  15. Nassar MM, Fadali OA, Khattab MA et al (1999) Thermal studies on paper treated with flame-retardant. Fire Mater 23:125–129

    Article  CAS  Google Scholar 

  16. Zhao HF, Sha LZ (2017) Synergistic effect of nano-TiO2, ammonium polyphosphate and diatomite ternary system on flame retardancy and smoke suppression of filled paper. Dig J Nanomater Biostruct 12(2):473–481

    Google Scholar 

  17. Lin H, Sha LZ, Zhao HF (2017) Synthesis of ammonium polyphosphate/diatomite composite filler and its effect on the flame retardancy of paper. Paper Paper Making 36(2):30–33

    Google Scholar 

  18. Sha LZ, Chen KF (2014) Preparation and characterization of ammonium polyphosphate/diatomite composite fillers and assessment of their flame-retardant effects on paper. BioResources 9(2):3104–3116

    Article  Google Scholar 

  19. Sha LZ, Chen KF (2016) Surface modification of ammonium polyphosphate-diatomaceous earth composite filler and its application in flame-retardant paper. J Therm Anal Calorim 123:339–347

    Article  CAS  Google Scholar 

  20. Yang WG, Yang F, Yang RD et al (2016) Ammonium polyphosphate/melamine cyanurate synergetic flame retardant system for use in papermaking. BioResources 11(1):2308–2318

    CAS  Google Scholar 

  21. Priegert AM, Siu PW, Hu TQ et al (2015) Flammability properties of paper coated with poly(methylenephosphine), an organophosphorus polymer. Fire Mater 39:647–657

    Article  CAS  Google Scholar 

  22. Wang N, Liu YS, Liu Y et al (2017) Properties and mechanisms of different guanidine flame retardant wood pulp paper. J Anal Appl Pyrol 128:224–231

    Article  CAS  Google Scholar 

  23. Wang N, Liu YS, Xu CG et al (2017) Acid-base synergistic flame retardant wood pulp paper with high thermal stability. Carbohyd Polym 178:123–130

    Article  CAS  Google Scholar 

  24. Koklukaya O, Carosio F, Grunlan JC et al (2015) Flame-retardant paper from wood fibers functionalized via layer-by layer assembly. ACS Appl Mater Interfaces 7:23750–23759

    Article  Google Scholar 

  25. Koklukaya O, Carosio F, Wagberg L (2018) Tailoring flame-retardancy and strength of papers via layer-by-layer treatment of cellulose fibers. Cellulose 25:2691–2709

    Article  Google Scholar 

  26. Zhou Y, Ding CY, Qian XR et al (2015) Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohyd Polym 115:670–676

    Article  CAS  Google Scholar 

  27. Jia YL, Lu Y, Zhang GX et al (2017) Facile synthesis of an eco-friendly nitrogen-phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. J Mater Chem A 5:9970–9981

    Article  CAS  Google Scholar 

  28. Ilia G, Drehe M, Iliescu S et al (2011) Flame retardants based on phosphoric acid for wood, textiles and paper. Rev Chim 62(12):1141–1144

    CAS  Google Scholar 

  29. Candan Z, Ayrilmis N, Dundar T (2012) Fire performance of LVL panels treated with fire retardant chemicals. Wood Res 57(4):651–658

    CAS  Google Scholar 

  30. Katović D, Bischof VS, Flinčec GS et al (2009) Flame retardancy of paper obtained with environmentally friendly agents. Fib Text Eastern Eur 17(3):90–94

    Google Scholar 

  31. He W, Bi W, Yang K et al (2015) Flame retarded paper prepared with hexaamidocyclotriphosphazene. Paper Sci Technol 34(4):24–26

    CAS  Google Scholar 

  32. Tang LS, Zhao J, Sui XT et al (2016) Impact of the mixture of hexa(N-hydroxymethyl)amidocyclotriphosphazene and partially methylated melamine formaldehyde resin on the flame retardancy of paper. Fib Texit Eastern Eur 24(4):153–160

    Google Scholar 

  33. Zhao B, Chen L, Long JW et al (2013) Synergistic effect between aluminum hypophosphite and alkyl-substituted phosphinate in flame-retarded polyamide 6. Ind Eng Chem Res 52:17162–17170

    Article  CAS  Google Scholar 

  34. Zhao B, Chen L, Long JW et al (2013) Aluminum hypophosphite versus alkyl-substituted phosphinate in polyamide 6: flame retardance, thermal degradation, and pyrolysis behavior. Ind Eng Chem Res 52:2875–2886

    Article  CAS  Google Scholar 

  35. Zhao B, Hu Z, Chen L et al (2011) A phosphorus-containing inorganic compound as an effective flame retardant for glass-fiber-reinforced polyamide 6. J Appl Polym Sci 119:2379–2385

    Article  CAS  Google Scholar 

  36. Davies PJ, Horrocks AR, Alderson A (2005) The sensitization of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polym Degrad Stab 88:114–122

    Article  CAS  Google Scholar 

  37. Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796

    Article  CAS  Google Scholar 

  38. Feng YJ, Zhou Y, Li DK et al (2017) A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohyd Polym 175:636–644

    Article  CAS  Google Scholar 

  39. Espinosa E, Sánchez R, Otero R et al (2017) A comparative study of the suitability of different cereal straws for lignocelluloses nanofibers isolation. Int J Biol Macromol 103:990–999

    Article  CAS  Google Scholar 

  40. Bumbudsanpharoke N, Ko S (2018) The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging. Int J Biol Macromol 107:1782–1791

    Article  CAS  Google Scholar 

  41. Kafle K, Lee CM, Shin H et al (2015) Effects of delignification on crystalline cellulose in lignocelluloses biomass characterized by vibrational sum frequency generation spectroscopy and X-ray diffraction. Bioenergy Res 8:1750–1758

    Article  CAS  Google Scholar 

  42. Goodell B, Zhu Y, Kim S et al (2017) Modification of the nanostructure of lignocelluloses cell walls via a non-enzymatic lignocelluloses deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the “Fundamental Research Funds for the Central Universities” (Grant No. XDJK2018D009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhong, L., Xu, Y. et al. Highly efficient flame-retardant kraft paper. J Mater Sci 54, 1884–1897 (2019). https://doi.org/10.1007/s10853-018-2911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2911-2

Keywords

Navigation