Skip to main content
Log in

Modified thermal balance method for estimating minimum inerting concentraion of flammable refrigerant mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

R1234yf is considered as a better alternative for R134a (the conventional refrigerant) due to its low global warming potential value, while its usage is limited because of its flammability. The flammability of any flammable refrigerant can be reduced by adding dilutants that are inert. Two methods (group contribution method and thermal balance method) were used to estimate the minimum inerting concentration (which decides the flammability zone) of the binary mixtures (refrigerant + dilutant). It was observed that the group contribution method and the thermal balance method predicted minimum inerting concentration of the refrigerant mixture (refrigerant + dilutant) with an absolute error of more than 50% and 8%, respectively. Therefore, a modified thermal balance method is proposed in this study to estimate the minimum inerting concentration and found that the proposed method predicts the values with reasonable accuracy when compared with the available experimental data. Further, the minimum inerting concentration for the dilutants R125 and R245fa (that are not experimentally known) with R1234yf is estimated. The results indicated that R227ea has better inert effect with R1234yf when compared to other dilutants (R125, R134a and R245fa) considered in this study. It was also found that the critical inerting concentration for R1234yf is 36.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A & B:

Constants depends upon refrigerant and dilutant respectively

CFC:

Chlorofluorocarbon

CIC:

Critical inerting concentration

C st :

Stoichiometric concentration of refrigerant (%)

C in :

Inerting concentration of nonflammable refrigerant (%)

C O :

The oxygen coefficient in a reaction (dimensionless)

CAFT:

Critical adiabatic flame temperature (K)

GWP:

Global warming potential

GCM:

Group contribution method

HCs:

Hydrocarbons

HFCs:

Hydrofluorocarbons

HQR:

Heating/quenching ratio

HFOs:

Hydrofluoroolefins

HCFC:

Hydrochlorfluorocarbon

H o :

Heating potential of oxygen based on air

H F :

Heating potential of refrigerant

LFL:

Lower flammability limit (%)

MIC:

Minimum inerting concentration (%)

MSDS:

Material safety data sheet

ODP:

Ozone depletion potential

PAG:

Polyalkylene glycol

Q d :

Quenching potential of dilutants

Q F :

Quenching potential of refrigerant

T a :

Ambient temperature (°C)

TBM:

Thermal balance method

UFL:

Upper flammability limit

V O :

Flame propagation velocity of flammable refrigerants (cm/s)

V U :

Flame propagation velocity of mixture in (m/s)

X D :

Dilutant concentration (%)

X L :

Lower flammability limit (volume ratio) (% or dimensionless)

X st :

Stoichiometric refrigerant/air volume concentration (% or dimensionless)

X u :

Upper flammability limit (volume ratio) (% or dimensionless)

Φ :

Inhibition coefficient

a:

Ambient

d:

Dilutant

i:

Component of a mixture

m:

Sum of a mixture

st:

Stoichiometric

AF:

Adiabatic flame

L:

Lower flammable limit (%)

U:

Upper flammable limit (%)

D:

Dilutant-based potential to air potential

F:

Refrigerant -based potential to air potential

O:

Oxygen-based potential to air potential

References

  1. Mota Babiloni A. Analysis of low global warming potential fluoride working fluids in vapour compression systems. Experimental evaluation of commercial refrigeration alternatives. Universitat Politècnica de València. 2016; https://doi.org/10.4995/thesis/10251/62680.

  2. Leck TJ. New high performance, low GWP refrigerants for stationary AC and refrigeration International Refrigeration and Air Conditioning Conference. Paper 1032.2010; http://docs.lib.purdue.edu/iracc/1032.

  3. Makhnatch P, Mota-Babiloni A, López-Belchí A, Khodabandeh R. R450A and R513A as lower GWP mixtures for high ambient temperature countries: experimental comparison with R134a. Energy. 2019;166:223–35. https://doi.org/10.1016/j.energy.2018.09.001.

    Article  CAS  Google Scholar 

  4. J Steven Brown. HFOs: new, low global warming potential refrigerants. Ashrae J Am Soc Heat Refrig Air Cond Eng Inc.; 2009;51:22.

  5. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants: a review. Int J Greenh Gas Control. 2009;3:108–19. https://doi.org/10.1016/j.ijggc.2008.07.003.

    Article  CAS  Google Scholar 

  6. Paradeshi L, Mohanraj M, Srinivas M, Jayaraj S. Exergy analysis of direct-expansion solar-assisted heat pumps working with R22 and R433A. J Therm Anal Calorim. 2018;134:2223–37. https://doi.org/10.1007/s10973-018-7424-3.

    Article  CAS  Google Scholar 

  7. Abthoff J, Antony P, Krämer M, Seiler J. The Mercedes-Benz C-class series hybrid. SAE Int. 1998. https://doi.org/10.4271/981123.

    Article  Google Scholar 

  8. Spatz M, Minor B, DuPont H. HFO-1234yf. A low GWP Refrig MAC VDA Altern Refrig Winter Meet. 2008; p. 13–4.

  9. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res. 2011;35:647–69. https://doi.org/10.1002/er.1736.

    Article  CAS  Google Scholar 

  10. Lee Y, Jung D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl Therm Eng. 2012;35:240–2. https://doi.org/10.1016/j.applthermaleng.2011.09.004.

    Article  CAS  Google Scholar 

  11. Abraham JDAP, Mohanraj M. Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a. J Therm Anal Calorim. 2019;136:2071–86. https://doi.org/10.1007/s10973-018-7843-1.

    Article  CAS  Google Scholar 

  12. Raveendran PS, Sekhar SJ. Investigation on the energy and exergy efficiencies of a domestic refrigerator retrofitted with water-cooled condensers of shell-and-coil and brazed-plate heat exchangers. J Therm Anal Calorim. 2019;136:381–8. https://doi.org/10.1007/s10973-018-7742-5.

    Article  CAS  Google Scholar 

  13. Rajendran P, Sidney S, Ramakrishnan I, Dhasan ML. Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant. Proc Inst Mech Eng Part E J Process Mech Eng. SAGE Publications Sage UK: London, England; 2019;0954408919881236; https://doi.org/10.1177/0954408919881236.

  14. Kondo S, Takahashi A, Tokuhashi K. Experimental exploration of discrepancies in F-number correlation of flammability limits. J Hazard Mater. 2003;100:27–36. https://doi.org/10.1016/S0304-3894(03)00111-0.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Bin L, Haibo Z. Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Exp Therm Fluid Sci. 2004;28:557–63. https://doi.org/10.1016/j.expthermflusci.2003.06.005.

    Article  CAS  Google Scholar 

  16. Zhao Y, Ting W, Xihong L. Experimental studies and estimates of the explosion limit of some environmentally friendly refrigerants. Combust Sci Technol. 2005;177:613–26. https://doi.org/10.1080/00102200590900507.

    Article  CAS  Google Scholar 

  17. Shrestha SOB, Wierzba I, Karim GA. Prediction of the extent of diluents concentrations in flammability limited gaseous fuel–diluent mixtures in air. Appl Therm Eng. 2009;29:2574–8. https://doi.org/10.1016/j.applthermaleng.2008.12.034.

    Article  CAS  Google Scholar 

  18. Li Z, Gong M, Wu J, Zhou Y. Comparison of dilution effects of R134a and nitrogen on flammable hydrofluorocarbons. J Therm Sci. 2009;18:377. https://doi.org/10.1007/s11630-009-0377-x.

    Article  CAS  Google Scholar 

  19. Yang Z, Liu H, Wu X. Theoretical and experimental study of the inhibition and inert effect of HFC125, HFC227ea and HFC13I1 on the flammability of HFC32. Process Saf Environ Prot. 2012;90:311–6. https://doi.org/10.1016/j.psep.2011.09.009.

    Article  CAS  Google Scholar 

  20. Yang Z, Wu X, Peng J. Theoretical and experimental investigation on the flame-retarding characteristic of R245fa. Exp Therm fluid Sci. 2013;44:613–9. https://doi.org/10.1016/j.expthermflusci.2012.08.025.

    Article  CAS  Google Scholar 

  21. Feng B, Yang Z, Zhai R. Experimental study on the influence of the flame retardants on the flammability of R1234yf. Energy. 2018;143:212–8. https://doi.org/10.1016/j.energy.2017.10.078.

    Article  CAS  Google Scholar 

  22. Bell I, Domanski P, Linteris G, McLinden MO. Evaluation of binary and ternary refrigerant blends as replacements for R134a in an air-conditioning system. In: International refrigeration and air conditioning conference 2018; https://docs.lib.purdue.edu/iracc/1840.

  23. Koban M. HFO-1234yf low GWP refrigerant LCCP analysis. In: SAE World Congress & Exhibition. 2009. SAE Technical Paper 2009-01-0179; https://doi.org/10.4271/2009-01-0179.

  24. Wu X, Dang C, Xu S, Hihara E. State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants. Int J Refrig. 2019. https://doi.org/10.1016/j.ijrefrig.2019.08.025.

    Article  Google Scholar 

  25. Ma T. A thermal theory for estimating the flammability limits of a mixture. Fire Saf J. 2011;46:558–67. https://doi.org/10.1016/j.firesaf.2011.09.002.

    Article  CAS  Google Scholar 

  26. Zhao F. Inert gas dilution effect on flammability limits of hydrocarbon mixtures. Texas A&M University; 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Harish Kruthiventi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumma, N., Moideen, A., Kaushik, P. et al. Modified thermal balance method for estimating minimum inerting concentraion of flammable refrigerant mixtures. J Therm Anal Calorim 141, 2201–2210 (2020). https://doi.org/10.1007/s10973-020-09657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09657-0

Keywords

Navigation