Skip to main content
Log in

An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Given the excellent thermal properties of MXene, MXene nanomaterials-based nanofluids may have the potential of being used as heat transfer fluids. In this work, we have investigated the dynamic viscosity of MXene-palm oil nanofluid. To prepare the nanofluid, MXene (\(\hbox {Ti}_{{3}}\hbox {C}_{{2}}\)) nanoflakes were first synthesized by the wet chemistry method. Then, nanofluids with 0.01, 0.03, 0.05, 0.08, 0.1, and 0.2 mass% concentrations of MXene nanoflakes were prepared, and their dynamic viscosity values were determined for a wide temperature range of 18–100 \(^\circ \hbox {C}\). The dynamic viscosity of the developed nanofluid, for each concentration, was found to be a strong function of temperature and decreased with increasing temperature. The effect of MXene nanoflakes concentration on the dynamic viscosity was found to be more significant at lower temperatures than at higher temperatures. A multilayer perceptron artificial neural network model was also developed in the study. To develop the model, temperature and nanoflakes concentration were given as inputs to the ANN model, whereas dynamic viscosity was the output of the model. The optimum model was found through the trial and error method. Statistical parameters such as mean square error, mean average percentage error, and correlation coefficient (R) were used to evaluate the performance of the developed model. The values of these parameters, for the optimum ANN model, were found to be 4.733E−05, 0.507%, and 0.99975, respectively. 95.67% of the deviations were also found to be in range of ± 2%. The developed model showed good performance, and its predictions were in excellent agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141–50.

    CAS  Google Scholar 

  2. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    CAS  Google Scholar 

  3. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME (FED). 1995;231:99–105.

    CAS  Google Scholar 

  4. Nagarajan PK, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for solar collector applications: a review. Energy Procedia. 2014;61:2416–34.

    CAS  Google Scholar 

  5. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53.

    CAS  Google Scholar 

  6. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    CAS  Google Scholar 

  7. Nazari MA, Ahmadi MH, Sadeghzadeh M, Shafii MB, Goodarzi M. A review on application of nanofluid in various types of heat pipes. J Central South Univ. 2019;26(5):1021–41.

    Google Scholar 

  8. Poplaski LM, Benn SP, Faghri A. Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf. 2017;107:358–71.

    CAS  Google Scholar 

  9. Sureshkumar R, Mohideen ST, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: a review. Renew Sustain Energy Rev. 2013;20:397–410.

    CAS  Google Scholar 

  10. Verma SK, Tiwari AK. Progress of nanofluid application in solar collectors: a review. Energy Convers Manag. 2015;100:324–46.

    CAS  Google Scholar 

  11. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008.

    CAS  Google Scholar 

  12. Seraj M, Yahya SM, Badruddin IA, Anqi AE, Asjad M, Khan ZA. Multi-response optimization of nanofluid-based IC engine cooling system using fuzzy PIV method. Processes. 2020;8(1):30.

    CAS  Google Scholar 

  13. Boungiorno J, Hu LW, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features issues, and research gaps. Nucl Technol. 2008;162(1):80–91.

    Google Scholar 

  14. Dai W, Kheireddin B, Gao H, Liang H. Roles of nanoparticles in oil lubrication. Tribol Int. 2016;102:88–98.

    CAS  Google Scholar 

  15. Nair V, Tailor PR, Parekh AD. Nanorefrigerants: a comprehensive review on its past, present and future. Int J Refrig. 2016;67:290–307.

    CAS  Google Scholar 

  16. Ali F, Khan I, Sheikh NA, Gohar M, Tlili I. Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: a generalized brinkman-type fluid model with non-singular kernel. Sci Rep. 2018;8:15285.

    PubMed  PubMed Central  Google Scholar 

  17. Dehkordi BAF, Abdollahi A. Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and basefluid type on the thermal conductivity of CuO-loaded nanofluids. Int Commun Heat Mass Transf. 2018;97:151–62.

    CAS  Google Scholar 

  18. Sedeh RN, Abdollahi A, Karimipour A. Experimental investigation toward obtaining nanoparticles’ surficial interaction with basefluid components based on measuring thermal conductivity of nanofluids. Int Commun Heat Mass Transf. 2019;103:72–82.

    CAS  Google Scholar 

  19. Ju WX, Fang LX. Influence of pH on nanofluids’ viscosity and thermal conductivity. Chin Phys Lett. 2009;26(5):056601.

    Google Scholar 

  20. Asadi A, Alarifi IM, Ali V, Nguyen HM. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. Ultrason Sonochem. 2019;58:104639.

    CAS  PubMed  Google Scholar 

  21. Xia G, Jiang H, Liu R, Zhai Y. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci. 2014;84:118–24.

    CAS  Google Scholar 

  22. Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liquids. 2018;265:181–8.

    CAS  Google Scholar 

  23. Murshed SMS, Estelle P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.

    CAS  Google Scholar 

  24. Darvanjooghi MHK, Esfahany MN. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica-ethanol nanofluid. Int Commun Heat Mass Transf. 2016;77:148–54.

    Google Scholar 

  25. Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;11:1129–36.

    CAS  Google Scholar 

  26. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30:2213–8.

    CAS  Google Scholar 

  27. Chopkar M, Sudarshan S, Das PK, Manna I. Effect of particle size on thermal conductivity of nanofluid. Mettal Mater Trans A. 2008;39A:1535–42.

    CAS  Google Scholar 

  28. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Google Scholar 

  29. Koca HD, Doganay S, Turgut A, Tavman IH, Saidur R, Mahbubul IM. Effect of particle size on the viscosity of nanofluids: a review. Renew Sustain Energy Rev. 2018;82:1664–74.

    CAS  Google Scholar 

  30. Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys. 2010;107:7–10.

    Google Scholar 

  31. Philip J, Shima PD, Raj B. Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology. 2008;19:305706.

    PubMed  Google Scholar 

  32. Shahsavar A, Salimpour MR, Saghafian M, Shafil MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Tech. 2016;30(2):809–15.

    Google Scholar 

  33. Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Google Scholar 

  34. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    CAS  Google Scholar 

  35. Yahya SM, Asjad M, Khan ZA. Multi-response optimization of TiO2/EG-water nano-coolant using entropy based preference indexed value (PIV) method. Mater Res Express. 2019;6:0850a1.

    CAS  Google Scholar 

  36. Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NWBM. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys A. 2019;519:209–16.

    CAS  Google Scholar 

  37. Ramezanizadeh M, Ahmadi MH, Nazari MA, Sadeghzadeh M, Chen L. A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew Sustain Energy Rev. 2019;114:109345.

    CAS  Google Scholar 

  38. Vakili M, Khosrojerdi S, Aghajannezhad P, Yahyaei M. A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int Commun Heat Mass Transf. 2017;82:40–8.

    CAS  Google Scholar 

  39. Derakhshanfard F, Mehralizadeh A. Application of artificial neural networks for viscosity of crude oil-based nanofluids containing oxides nanoparticles. J Pet Sci Eng. 2018;168:263–72.

    CAS  Google Scholar 

  40. Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7:17369.

    PubMed  PubMed Central  Google Scholar 

  41. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials. 2017;10(5):552.

    PubMed Central  Google Scholar 

  42. Shahsavar A, Khanmohammadi S, Toghraie D, Salihepour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: Measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liquids. 2019;276:850–60.

    CAS  Google Scholar 

  43. Toghraie D, Sina M, Jolfaei NA, Hajian M, Afrand M. Designing an artificial neural network (ANN) to predict the viscosity of silver/ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys A. 2019;534:122142.

    CAS  Google Scholar 

  44. Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Google Scholar 

  45. Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    CAS  Google Scholar 

  46. Afrand M, Nadooshan AA, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int Commun Heat Mass Transf. 2016;77:49–53.

    CAS  Google Scholar 

  47. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–53.

    CAS  PubMed  Google Scholar 

  48. Naguib M, Come J, Dyatkin B, Presser V, Taberna PL, Simon P, Barsoum MW, Gogotsi Y. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun. 2012;16(1):61–4.

    CAS  Google Scholar 

  49. Aslfattahi N, Saidur R, Arifutzzaman A, Sadri R, Bimbo N, Sabri MFM, Maughan PA, Bouscarrat L, Dawson RJ, Said SM, Goh BT, Sidik NAC. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. J Energy Storage. 2020;27:101115.

    Google Scholar 

  50. Akhgar A, Toghraie D, Sina N, Afrand M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Tech. 2019;355:602–10.

    CAS  Google Scholar 

  51. Ahmadi MH, Ghahremannezhad A, Chau KW, Seifaddini P, Ramezannezhad M, Ghasempour R. Development of simple-to-use predictive models to determine thermal properties of Fe2O3/water-ethylene glycol nanofluid. Computation. 2019;7(1):18.

    CAS  Google Scholar 

  52. Sarapardeh AH, Varamesh A, Husein MM, Karan K. On the evaluation of the viscosity of nanofluid systems: modeling and data assessment. Renew Sustain Energy Rev. 2018;81:313–29.

    Google Scholar 

  53. Ariana MA, Vaferi B, Karimi G. Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol. 2015;278:1–10.

    CAS  Google Scholar 

  54. Goh ATC. Back-propagation neural networks for modeling complex systems. Artif Intell Eng. 1995;9(3):143–51.

    Google Scholar 

  55. Kingma DP, Ba J. Adam: a method for stochastic optimization. Preprint arXiv:1412.6980. 2014.

  56. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNTalumina/water (80%)ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mohd. Yahya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, N., Aslfattahi, N., Yahya, S.M. et al. An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data. J Therm Anal Calorim 144, 1175–1186 (2021). https://doi.org/10.1007/s10973-020-09638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09638-3

Keywords

Navigation