Skip to main content
Log in

Coulomb forces impacts on nanomaterial transportation within porous tank with lid walls

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Electrical sensor has been considered in the current attempt. Combination of buoyancy, electric and radiative forces has been included in the governing equations. Convective flow attenuation with insertion of electric field and such force permits to control the style of the flow. Outputs have been illustrated in terms of contours and distributions. The increment of Nu corresponding to increasing permeability is less than that obtained with the rise of voltage. Nu increases with rise of shape factor which is attributed to easier nanoparticles transportation. Growth of radiation term makes Nu to augment, and impact of voltage become stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  2. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  3. Li Y, Aski FS, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  4. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  5. Tlili I, Alkanhal TA, Othman M, Dara RN, Shafee A. Water management and desalination in KSA view 2030: case study of solar humidification and dehumidification system. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08700-z.

    Article  Google Scholar 

  6. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation Int J. Heat Mass Transf. 2019;136:1233–40.

    CAS  Google Scholar 

  7. Alrobaian AA, Alsagri AS, Ali JA, Hamad SM, Shafee A, Nguyen TK, Li Z. Investigation of convective nanomaterial flow and exergy drop considering CVFEM within a porous tank. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08564-3.

    Article  Google Scholar 

  8. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  9. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, Jilani AK, Tlili I. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  10. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135(2019):470–8.

    CAS  Google Scholar 

  11. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09248-8.

    Article  Google Scholar 

  12. Sheikholeslami M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng. 2015;37:1623–33.

    CAS  Google Scholar 

  13. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08979-y.

    Article  Google Scholar 

  14. Li F, Sheikholeslami M, Dara RN, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111939.

    Article  Google Scholar 

  15. Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals. 2016;89:290–4.

    Google Scholar 

  16. Wang R, Sheikholeslami M, Mahmood BS, Shafee A, Nguyen-Thoi T. Simulation of triplex-tube heat storage including nanoparticles, solidification process. J Mol Liq. 2019;296:111731.

    CAS  Google Scholar 

  17. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

  18. Farshad SA, Sheikholeslami M. Numerical examination for entropy generation of turbulent nanomaterial flow using complex turbulator in a solar collector. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123951.

    Article  Google Scholar 

  19. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  20. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    CAS  Google Scholar 

  21. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Utilizing copper oxide nanoparticles for expedition of solidification within a storage system. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112371.

    Article  Google Scholar 

  22. Sheikholeslami M, Keshteli AN, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112329.

    Article  Google Scholar 

  23. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med 2015, Article ID 418106, 10. https://doi.org/10.1155/2015/418106.

  24. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H. A novel bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020. https://doi.org/10.1016/j.ces.2019.115465.

    Article  Google Scholar 

  25. Rabbi KM, Sheikholeslami M, Karim A, Shafee A, Li Z, Tlili I. Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial. Physica A Stat Mech Appl Physica A. 2020;541:123520.

    CAS  Google Scholar 

  26. Keshteli AN, Sheikholeslami M. Effects of Wavy Wall and Y shaped fins on solidification of PCM with dispersion of Al2O3 nanoparticle. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08807-3.

    Article  Google Scholar 

  27. Nguyen TK, Usman M, Sheikholeslami M, Haq R, Shafee A, Jilani AK, Tlili I. Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing non-equilibrium model. Physica A Stat Mech Appl. 2020;537:122459.

    Google Scholar 

  28. Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.

    Google Scholar 

  29. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018. https://doi.org/10.1063/1.5012517.

    Article  Google Scholar 

  30. Sheikholeslami M, Rokni HB. Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J Mol Liq. 2017;232:390–5.

    CAS  Google Scholar 

  31. Gao W, Zhu LL, Wang KY. Ranking based ontology scheming using eigenpair computation. J Intell Fuzzy Syst. 2016;31(4):2411–9.

    Google Scholar 

  32. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    CAS  Google Scholar 

  33. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Google Scholar 

  34. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888. https://doi.org/10.1016/j.jclepro.2019.118888.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  36. Jouybari BR, Osgouie KG, Meghdari A. Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot. Robotica. 2016;34(1):23–42.

    Google Scholar 

  37. Gao W, Zhu LL, Wang KY. Ontology sparse vector learning algorithm for ontology similarity measuring and ontology mapping via ADAL technology. Int J Bifurc Chaos. 2015;25(14):1540034. https://doi.org/10.1142/S0218127415400349.

    Article  Google Scholar 

  38. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  39. Rezaeianjouybari B, Osgouie BG, Meghdari A. Employing neural networks for manipulability optimization of the dual-arm cam-lock robot. In Proceedings (IMECE) of ASME international mechanical engineering congress and exposition, vol 8.

  40. Gao W, Zhu LL. Gradient learning algorithms for ontology computing. Comput Intell Neurosci. 2014, Article ID 438291, 12. https://doi.org/10.1155/2014/438291.

  41. Sheikholeslami M, Jafaryar M, Ali JA, Hamad Sm, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    CAS  Google Scholar 

  42. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Google Scholar 

  43. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    CAS  Google Scholar 

  44. Hedayat M, Sheikholeslami M, Shafee A, Nguyen-Thoi T, Henda MB, Tlili I, Li Z. Investigation of nanofluid conduction heat transfer within a triplex tube considering solidification. J Mol Liq. 2019;290:111232.

    CAS  Google Scholar 

  45. Raju CSK, Hoque MM, Anika NN, Mamatha SU, Sharma P. Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technol. 2017;317:408–16.

    CAS  Google Scholar 

  46. Qi C, Wang G, Yang L, Wan Y, Rao Z. Two-phase lattice Boltzmann simulation of the effects of base fluid and nanoparticle size on natural convection heat transfer of nanofluid. Int J Heat Mass Transf. 2017;105:664–72.

    CAS  Google Scholar 

  47. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39:775–84.

    Google Scholar 

  48. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08878-2.

    Article  Google Scholar 

  49. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    CAS  Google Scholar 

  50. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    CAS  Google Scholar 

  51. Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

    Article  Google Scholar 

  52. Gao W. Three algorithms for graph locally harmonious colouring. J Differ Equ Appl. 2017;23(1–2):8–20.

    Google Scholar 

  53. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  54. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  55. Farshad SA, Sheikholeslami M. FVM modeling of nanofluid forced convection through a solar unit involving MCTT. Int J Mech Sci. 2019;159:126–39.

    Google Scholar 

  56. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Google Scholar 

  57. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    CAS  Google Scholar 

  58. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and Pressure Drop during condensation of refrigerant-based Nanofluid: an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    CAS  Google Scholar 

  59. Gao W, Liang L, Xu TW, Zhou JX. Degree conditions for fractional (g, f, n’, m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs. Bull Malays Math Sci Soc. 2016;39:315–30.

    Google Scholar 

  60. Farshad SA, Sheikholeslami M, Hosseini SH, Shafee A, Li Z. Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles. Microsyst Technol. 2019. https://doi.org/10.1007/s00542-019-04430-2.

    Article  Google Scholar 

  61. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via Non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    CAS  Google Scholar 

  62. Farshad SA, Sheikholeslami M. Turbulent nanofluid flow through a solar collector influenced by multi-channel twisted tape considering entropy generation. Eur Phys J Plus. 2019;134:149. https://doi.org/10.1140/epjp/i2019-12606-2.

    Article  CAS  Google Scholar 

  63. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156:218–24.

    Google Scholar 

  64. Gao W, Wang WF. Toughness and fractional critical deleted graph. Util Math. 2015;98:295–310.

    Google Scholar 

  65. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    CAS  Google Scholar 

  66. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    CAS  Google Scholar 

  67. Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9.

    Google Scholar 

  68. Sheikholeslami M. Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    CAS  Google Scholar 

  69. Sheikholeslami M. Investigation of Coulomb forces effects on Ethylene glycol based nanofluid laminar flow in a porous enclosure. Appl Math Mech. 2018;39(9):1341–52.

    Google Scholar 

  70. Gao W. A sufficient condition for a graph to be fractional (a, b, n)-critical deleted graph. ARS Combin. 2015;119:377–90.

    Google Scholar 

  71. Rafatijo H, Monge-Palacios M, Thompson DL. Identifying collisions of various molecularities in molecular dynamics simulations. J Phys Chem A. 2019;123(6):1131–9. https://doi.org/10.1021/acs.jpca.8b11686.

    Article  CAS  PubMed  Google Scholar 

  72. Rafatijo H, Thompson DL. General application of Tolman’s concept of activation energy. J Chem Phys. 2017;147:224111017. https://doi.org/10.1063/1.5009751.

    Article  CAS  Google Scholar 

  73. Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.

    Google Scholar 

  74. Gao W, Gao Y. Toughness condition for a graph to be a fractional (g,f,n)-critical deleted graph. Sci World J. 2014, Article ID 369798, 7. https://doi.org/10.1155/2014/369798.

  75. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  76. Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    CAS  Google Scholar 

  77. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Google Scholar 

  78. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    CAS  Google Scholar 

  79. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Google Scholar 

  80. Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    CAS  Google Scholar 

  81. Gao W, Liang L, Xu TW, Zhou JX. Tight toughness condition for fractional (g, f, n)-critical graphs. J Korean Math Soc. 2014;51(1):55–65.

    Google Scholar 

  82. Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.

    CAS  Google Scholar 

  83. Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.

    Google Scholar 

  84. Sheikholeslami M. Lattice Boltzmann Method simulation of MHD non-Darcy nanofluid free convection. Phys B. 2017;516:55–71.

    CAS  Google Scholar 

  85. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Sol Energy. 2017;157(Supplement C):1047–55.

    Google Scholar 

  86. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann Method. J Mol Liq. 2017;234:364–74.

    CAS  Google Scholar 

  87. Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.

    Google Scholar 

  88. Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann Method. J Mol Liq. 2017;231:555–65.

    CAS  Google Scholar 

  89. Sheikholeslami M. CuO-water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017;132:55. https://doi.org/10.1140/epjp/i2017-11330-3.

    Article  CAS  Google Scholar 

  90. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  91. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.

    CAS  Google Scholar 

  92. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. Rev J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

  93. Yang L, Mao M, Huang JN, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    CAS  Google Scholar 

  94. Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq. 2017;225:903–12.

    CAS  Google Scholar 

  95. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  96. Sheikholeslami M. Influence of Coulomb forces on Fe3O4–H2O nanofluid thermal improvement. Int J Hydrogen Energy. 2017;42:821–9.

    CAS  Google Scholar 

  97. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  98. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019;138:795–804. https://doi.org/10.1007/s10973-019-08156-1.

    Article  CAS  Google Scholar 

  99. Gao W, Wang WF. Second atom-bond connectivity index of special chemical molecular structures. J Chem 2014, Article ID 906254, 8. https://doi.org/10.1155/2014/906254.

  100. Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Google Scholar 

  101. Hwang KS, Jang SP. Choi S (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf. 2009;52(1):193–9.

    CAS  Google Scholar 

  102. Qi C, Tang J, Ding Z, Yan Y, Guo L, Ma Y. Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. Int Commun Heat Mass Transf. 2019;109:104349.

    CAS  Google Scholar 

  103. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Google Scholar 

  104. Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z. Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng. 2018;338:491–505.

    Google Scholar 

  105. Yang L, Du K. A comprehensive review on the natural, forced and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08987-y.

    Article  Google Scholar 

  106. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  107. Yang L, Ji W, Huang JN, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq. 2019;296:111780.

    CAS  Google Scholar 

  108. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Google Scholar 

  109. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf. 2017;106:1261–9.

    CAS  Google Scholar 

  110. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Google Scholar 

  111. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium: CVFEM modeling. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08501-4.

    Article  Google Scholar 

  112. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Google Scholar 

  113. Sheikholeslami M, Vajravelu K, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    CAS  Google Scholar 

  114. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    CAS  Google Scholar 

  115. Aly AM, Raizah ZAS, Sheikholeslami M. Analysis of mixed convection in a sloshing porous cavity filled with a nanofluid using ISPH method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08575-0.

    Article  Google Scholar 

  116. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Google Scholar 

  117. Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Mouli KVVC, Tlili I. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08401-7.

    Article  Google Scholar 

  118. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  119. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    CAS  Google Scholar 

  120. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    CAS  Google Scholar 

  121. Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time dependent heat transfer simulation for NEPCM solidification inside a channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08140-9.

    Article  Google Scholar 

  122. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Google Scholar 

  123. Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–55.

    CAS  Google Scholar 

  124. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.

    CAS  Google Scholar 

  125. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  126. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  127. Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    CAS  Google Scholar 

  128. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    CAS  Google Scholar 

  129. Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.

    CAS  Google Scholar 

  130. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  131. Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD Int J. Heat Mass Transf. 2017;109:115–22.

    CAS  Google Scholar 

  132. Alkanhal TA, Sheikholeslami M, Usman M, Haq R, Shafee A, Al-Ahmadi AS, Tlili I. Thermal management of MHD nanofluid within the porous medium enclosed in a Wavy Shaped cavity with square obstacle in the presence of radiation heat source. Int J Heat Mass Transf. 2019;139:87–94.

    CAS  Google Scholar 

  133. Sheikholeslami M, Sadoughi MK. Simulation of CuO- water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  134. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  135. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  136. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2018;344:306–18.

    Google Scholar 

  137. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    CAS  Google Scholar 

  138. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  139. Sheikholeslami M. Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl. 2018;30(4):1055–64.

    Google Scholar 

  140. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    CAS  Google Scholar 

  141. Oueslati FS, Bennacer R, ElGanaoui M, ElCafsi A. Competition between the lid driven and the natural convection of nanofluids taking into consideration the Soret effect. Int J Heat Mass Transf. 2017;114:1341–9.

    CAS  Google Scholar 

  142. Nithyadevi N, Begum AS, Oztop HF, Abu-Hamdeh N. Mixed convection analysis in heat transfer enhancement of a nanofluid filled porous enclosure with various wall speed ratios. Int J Heat Mass Transf. 2017;113:716–29.

    CAS  Google Scholar 

  143. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;446:3639–53.

    Google Scholar 

  144. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  145. Sheikholeslami M, Hayat T, Alsaedi A, Abelman S. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int J Heat Mass Transf. 2017;108:2558–65.

    CAS  Google Scholar 

  146. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    CAS  Google Scholar 

  147. Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Elsevier; 2019. ISBN: 9780128141526.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Shafee, A., Nam, N.D. et al. Coulomb forces impacts on nanomaterial transportation within porous tank with lid walls. J Therm Anal Calorim 143, 4249–4260 (2021). https://doi.org/10.1007/s10973-020-09407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09407-2

Keywords

Navigation