Skip to main content
Log in

Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A numerical approach has been offered in this investigation regarding the turbulent three-dimensional flow due to utilizing twisted tape insets. Solar heat flux was employed to augment the temperature of nanomaterial. Streamline and velocity as well as turbulent intensity are shown in contours. In addition, the simulations with FVM accomplish to capture the behavior of thermal performance with variation of Reynolds number, diameter ratio and number of revolution. Selecting lower diameter ratio results in the thicker thermal boundary layer. Thermal performance is directly proportional to both geometric variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

D * :

Diameter ratio

u :

Velocity

q″:

Heat flux

Pi :

Pitch length

Nu :

Nusselt number

N :

Revolution

K :

Turbulent kinetic energy

I :

Turbulence intensity

CFD:

Computational fluid dynamics

\(\varepsilon\) :

Dissipation rate

\(\varGamma_{t}\) :

Turbulent thermal diffusivity

\(\sigma_{\varepsilon }\) :

Turbulent Prandtl number for \(\varepsilon\)

k :

Kinetic energy

b :

Bulk

tt :

Twisted tape

P :

Plain tube

References

  • Abbas AK, Dhaidan NS (2018) Turbulent forced convection of nanofluids flow in corrugated tubes. IOP Conf Ser Mater Sci Eng 433:012054

    Article  Google Scholar 

  • ANSYS® Academic research, release 18.1, ANSYS FLUENT, Theory Guide. ANSYS, Inc

  • Blazek J (2015) Computational fluid dynamics: principles and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Del Cola D, Padovana A, Bortolatoa M, Dai Prèa M, Zambolinb E (2013) Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy 58:258–269

    Article  Google Scholar 

  • Duffie JA, Beckman WA (1980) Solar engineering of thermal processes. Wiley, New York

    Google Scholar 

  • Eldabe NTM, Abo-Seida OM, Abo Seliem AAS, Elshekhipy AA, Hegazy N (2018) Magnetohydrodynamic peristaltic flow of Williamson nanofluid with heat and mass transfer through a non-Darcy porous medium. Microsyst Technol 24:3751–3776

    Article  Google Scholar 

  • Farshad SA, Sheikholeslami M (2019) Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08156-1

    Article  Google Scholar 

  • Fengrui S, Yuedong Y, Xiangfang L (2018) The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy 143:995–1005

    Article  Google Scholar 

  • Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Hashim NMR, Yusoff MZ, Mohammed HA (2017) Turbulent forced convection flow of nanofluids over triple forward facing step. World J Eng 14(2017):263–278

    Article  Google Scholar 

  • He Y, Qi C, Hu Y, Qin B, Ding Y (2011) Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity. Nanoscale Res Lett 6(1):184–191

    Article  Google Scholar 

  • Ijaz M, Ayub M (2019) Nonlinear convective stratified flow of Maxwell nanofluid with activation energy. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01121

    Article  Google Scholar 

  • Ijaz M, Ayub M, Zubair M, Riaz A (2018) On stratified flow of ferromagnetic nanofluid with heat generation/absorption. Phys Scr 1:1. https://doi.org/10.1088/1402-4896/aaf6df

    Article  Google Scholar 

  • Jyothi J, Chaliyawala H, Srinivas G, Nagaraja HS, Barshilia HC (2015) Design and fabrication of spectrally selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber for high temperature solar thermal power applications. Sol Energy Mater Sol Cells 140:209–216

    Article  Google Scholar 

  • Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30(3):231–295

    Article  Google Scholar 

  • Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S (2009) Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys 9:119–123

    Article  Google Scholar 

  • Martinopoulos G, Missirlis D, Tsilingiridis G, Yakinthos K, Kyriakis N (2010) CDF modeling of a polymer solar collector. Renew Energy 35(7):1499–1508

    Article  Google Scholar 

  • Minea AA (2015) Simulation of nanofluids turbulent forced convection at high Reynolds number: a comparison study of thermophysical properties influence on heat transfer enhancement. Flow Turbul Combust 94:555–575

    Article  Google Scholar 

  • Nadeem S, Ahmed Z, Saleem S (2018) Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. Microsyst Technol. https://doi.org/10.1007/s00542-018-4232-4

    Article  Google Scholar 

  • Norton B (2006) Anatomy of a solar collector: developments in materials, components and efficiency improvements in solar thermal collector systems. Refocus 7(3):32–355

    Article  Google Scholar 

  • Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M (2019) General method for prediction of thermal conductivity for well-characterized hydrocarbon mixtures and fuels up to extreme conditions using entropy scaling. Fuel. https://doi.org/10.1016/j.fuel.2019.02.044

    Article  Google Scholar 

  • Shah Z, Islam S, Gul T, Bonyah E, Khan A (2018) “Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects. Results Phys 10:36–45

    Article  Google Scholar 

  • Shah Z, Islam S, Ayaz H, Khan S (2019) Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of hall current. ASME J Heat Transf 1:1. https://doi.org/10.1115/1.4040415

    Article  Google Scholar 

  • Sheikholeslami M (2019a) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M (2019b) Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Mahian O (2019) Omid, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA, Li Z, Shafee A, Abbasi FM (2018) Time dependent conduction heat transfer during solidification in a storage system using nanoparticles. Microsyst Technol. https://doi.org/10.1007/s00542-018-4050-8

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2019a) Analyze of entropy generation for NEPCM melting process inside a heat storage system. Microsyst Technol. https://doi.org/10.1007/s00542-019-04301-w

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R (2019b) Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf 136:1233–1240

    Article  Google Scholar 

  • Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong (2019c) Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod 221:885–898

    Article  Google Scholar 

  • Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I (2019d) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf 135:470–478

    Article  Google Scholar 

  • Sivaraj C, Sheremet MA (2018) Convective–radiative heat transfer in a cavity filled with a nanofluid under the effect of a nonuniformly heated plate. Int J Numer Methods Heat Fluid Flow 28:1392–1409

    Article  Google Scholar 

  • Tsai T-H, Chein R (2007) Performance analysis of nanofluid-cooled microchannel heat sinks. Int J Heat Fluid Flow 28(5):1013–1026

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (2007a) An introduction to computational fluid dynamics: the finite volume method. Prentice Hall, New Jersey

    Google Scholar 

  • Versteeg HK, Malalasekera W (2007b) An introduction to computational fluid dynamics: the finite volume method, 2nd edn. Pearson/Prentice Hall, Harlow

    Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS, Yadav N, Lee J, Kim MC (2014) Linear and nonlinear analysis of thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid Nanofluid 16:425–440

    Article  Google Scholar 

  • Zheng S, Juntai S, Keliu W, Xiangfang L (2018) Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content. Ind Eng Chem Res 57:3430–3440

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by the National Sciences Foundation of China (NSFC) (No. U1610109), Taishan Scholar and ARC DECRA (No. DE190100931). In addition, the authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant Program No. BNUT/390051/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshad, S.A., Sheikholeslami, M., Hosseini, S.H. et al. Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles. Microsyst Technol 25, 4237–4247 (2019). https://doi.org/10.1007/s00542-019-04430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04430-2

Navigation