Skip to main content
Log in

Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work numerically investigated entropy production rate in Al2O3/H2O nanofluid flowing through a convergent pipe in laminar flow regime using computational fluid dynamic and response surface methodology. A parametric study was carried out on Reynolds number (400–2000), nanoparticle concentration (0–3%) and convergence angle (0°, 2.5°, 5° and 7.5°) on entropy production rate and Bejan number. Based on the number of variables and levels, the condition of 20 runs was defined and 20 simulations were performed. The result showed that the increase in Reynolds number and converging angle decreases the entropy production rate. Also, the result of ANOVA revealed that Reynolds number, converging angle and interaction between them are statistically significant to the entropy production rate. Furthermore, sensitivity analysis carried out on the regression model showed that the convergence angle is the most sensitive parameter among the three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(c_{\text{p}}\) :

Specific heat capacity at constant pressure (J kg−1 K−1)

D h :

Diameter of the pipe (m)

d f :

Diameter of water molecule (nm)

\(f\) :

Friction factor

\(h\) :

Coefficient of heat transfer (W m−2 K)

\({\text{Nu}}\) :

Nusselt number

\(\Pr\) :

Prandtl number of base fluid

Re:

Reynolds number

Rep :

Nanoparticle Reynolds number

\(S_{\text{total}}^{{{\prime \prime \prime }}}\) :

Total entropy production per unit volume

\(S_{\text{vis}}^{{{\prime \prime \prime }}}.\) :

Viscous entropy production per unit volume

\(S_{\text{ther}}^{{{\prime \prime \prime }}}\) :

Thermal entropy production per unit volume

\(T_{\text{in}}\) :

Inlet temperature of base fluid (K)

u r, u x :

Component velocity (m s−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\lambda\) :

Thermal conductivity (W m−1 K−1)

μ :

Dynamic viscosity (kg ms−1)

φ :

Nanoparticle volume fraction

ρ :

Density of base fluid (kg m−3)

f:

Base fluid

fr:

Freezing point

in:

Inlet

nf :

Nanofluid

p:

Nanoparticle

ther:

Thermal

vis:

Viscous

total:

Total

References

  1. Fadodun OG, Amosun AA, Salau AO, Ogundeji JA. Numerical investigation of thermal performance of single-walled carbon nanotube nanofluid under turbulent flow conditions. Eng Rep. 2019;1:e12024

    CAS  Google Scholar 

  2. Samaha MA, Kahwaji GY. Passively enhancing convection heat transfer around cylinder using shrouds. In: APS meeting abstracts. 2017.

  3. Toghraie D, Mohammad M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2019;135(1):145–59.

    Article  CAS  Google Scholar 

  4. Sarkar M, Paramane SB, Sharma A. Periodically fully developed heat and fluid flow characteristics in a furrowed wavy channel. Heat Transf Eng. 2017;38(2):278–88.

    Article  CAS  Google Scholar 

  5. Ahmadi M. Heat transfer mechanisms in water-based nanofluids. Louisville: School of Engineering, University of Louisville; 2015.

    Book  Google Scholar 

  6. Rainieri S, Bozzoli F, Cattani L. Passive techniques for the enhancement of convective heat transfer in single phase duct flow. In: Journal of physics: conference series, vol 547, no 1. IOP Publishing; 2014. p. 012002.

  7. Sawane T, Patil P, Chavhan A, Dusane BM. A review on heat transfer enhancement by passive methods. Int Res J Eng Technol. 2016;3(9):1567–74.

    Google Scholar 

  8. Marquis FDS, Chibante LPF. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. J Miner Met Mater Soc. 2015;57(12):32–43.

    Article  Google Scholar 

  9. Al-Sammarraie AT, Vafai K. Heat transfer augmentation through convergence angles in a pipe. Numer Heat Transf Part A Appl. 2017;72(3):197–214.

    Article  CAS  Google Scholar 

  10. Mohyud-Din ST, Khan U, Hassan SM. Numerical investigation of magnetohydrodynamic flow and heat transfer of copper–water nanofluid in a channel with non-parallel walls considering different shapes of nanoparticles. Adv Mech Eng. 2016;8(3):1687814016637318.

    Article  Google Scholar 

  11. Roy KR, Prasad B. Numerical analysis of fluid flow and heat transfer in a helical rectangular duct of a converging diverging nozzle. Int J Eng Sci Technol. 2014;6(5):36–43.

    Article  Google Scholar 

  12. Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Haghighi MG. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alex Eng J. 2017;56(1):161–70.

    Article  Google Scholar 

  13. Sari MR, Kezzar M, Adjabi R. Heat transfer of copper/water nanofluid flow through converging-diverging channel. J Cent South Univ. 2016;23(2):484–96.

    Article  CAS  Google Scholar 

  14. Al-Sammarraie AT, Al-Jethelah M, Salimpour MR, Vafai K. Nanofluids transport through a novel concave/convex convergent pipe. Numer Heat Transf Part A Appl. 2019;75(2):91–109.

    Article  CAS  Google Scholar 

  15. Bejan A, Tsatsaronis G, Moran M, Moran MJ. Thermal design and optimization. Hoboken: Wiley; 1996.

    Google Scholar 

  16. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79(3):1191–218.

    Article  CAS  Google Scholar 

  17. Bhattacharjee S, Grosshandler WL. The formation of a wall jet near a high temperature wall under microgravity environment. In: ASME 1988 national heat transfer conference, vol 1; 1988. p. 711–716.

  18. Awad MM. A new definition of Bejan number. Therm Sci. 2012;16(4):1251–3.

    Article  Google Scholar 

  19. Awad MM, Lage JL. Extending the Bejan number to a general form. Therm Sci. 2013;17(2):631–3.

    Article  Google Scholar 

  20. Awad MM. Hagen number versus Bejan number. Therm Sci. 2013;17(4):1245–50.

    Article  Google Scholar 

  21. Awad MM. An alternative form of the Darcy equation. Therm Sci. 2014;18(2):S617–9.

    Article  Google Scholar 

  22. Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-019-08169-w.

    Article  Google Scholar 

  23. Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–71.

    Article  CAS  Google Scholar 

  24. Nayak RK, Bhattacharyya S, Pop I. Heat transfer and entropy generation in mixed convection of a nanofluid within an inclined skewed cavity. Int J Heat Mass Transf. 2016;102:596–609.

    Article  CAS  Google Scholar 

  25. Armaghani T, Ismael MA, Chamkha AJ. Analysis of entropy generation and natural convection in an inclined partially porous layered cavity filled with a nanofluid. Can J Phys. 2016;95(3):238–52.

    Article  CAS  Google Scholar 

  26. Chan JS, Ghadimi A, Simon H, Metselaar C, LotfizadehdehkordI B. Optimization of temperature and velocity on heat transfer enhancement of nonaqueous alumina nanofluid. J Eng Sci Technol. 2015;10:85–101.

    Google Scholar 

  27. Fadodun OG, Amosun AA, Ogundeji JA, Olaloye DO. Numerical investigation of thermal efficiency and pumping power of Al2O3/H2O nanofluid in pipe using response surface methodology. J Nanofluids. 2019;8(7):1566–76.

    Article  Google Scholar 

  28. Darbari B, Rashidi S, Abolfazli Esfahani J. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy. 2016;18(2):52.

    Article  Google Scholar 

  29. Konchada PK, Pv V, Bhemuni V. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach. Arch Thermodyn. 2016;37(2):3–22.

    Article  Google Scholar 

  30. Saha G, Paul MC. Numerical analysis of the heat transfer behavior of water-based Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int Commun Heat Mass Transf. 2016;56:96–108.

    Article  CAS  Google Scholar 

  31. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  32. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  33. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  34. Shah RK, London AL. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Cambridge: Academic Press; 2014.

    Google Scholar 

  35. Ji Y, Zhang HC, Yang X, Shi L. Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids. Entropy. 2017;19(3):108–16.

    Article  CAS  Google Scholar 

  36. Bejan A. Advanced engineering thermodynamics, entropy generation minimization. Hoboken: Wiley; 2016.

    Google Scholar 

  37. Farhad F, Dariush K, Mojtaba M. Optimization of double pipe heat exchanger with response surface methodology using nanofluid and twisted tape. J Fluid Mech. 2017;3:20.

    Article  Google Scholar 

  38. Khuri AI, Mukhopadhyay S. Response surface methodology. Wiley Interdiscip Rev Comput Stat. 2010;2(2):128–49.

    Article  Google Scholar 

  39. Design expert 8.0.7, Stat-Ease Inc., Minneapolis, MN, USA.

  40. Fluent Inc. Fluent 14.0 theory guide. Pittsburgh: Fluent Inc.; 2012.

    Google Scholar 

  41. Karimipour A, Afrand M, Akbari M, Safaei MR. Simulation of fluid flow and heat transfer in the inclined enclosure. Int J Mech Aerosp Eng. 2012;6:86–91.

    Google Scholar 

  42. Andreozzi A, Manca O, Nardini S, Ricci D. Forced convection enhancement in channels with transversal ribs and nanofluids. Appl Therm Eng. 2016;98:1044–53.

    Article  CAS  Google Scholar 

  43. Nadila NI, Lazim TM, Mat S. Verification of heat transfer enhancement in tube with spiral corrugation. In: AIP conference proceedings, vol 2062, no 1. AIP Publishing; 2019. p. 020032.

  44. Khan AQ, Rasheed A. Mixed convection magnetohydrodynamics flow of a nanofluid with heat transfer: a numerical study. Math Probl Eng. 2019;2019(8129564):1–14.

    Article  CAS  Google Scholar 

  45. Carley KM, Kamneva NY, Reminga J. Response surface methodology (No. CMU-ISRI-04-136). Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science. 2004.

  46. Shari K. How to get started with design expert software. Minneapolis: Stat-Ease Inc.; 2013.

    Google Scholar 

  47. Richard B. Design expert 7, introduction. Leicestershire: Mathematics Learning Support Centre; 2007.

    Google Scholar 

  48. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Two-phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J Mol Liq. 2016;220:888–901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatomide G. Fadodun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadodun, O.G., Amosun, A.A., Okoli, N.L. et al. Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J Therm Anal Calorim 143, 431–444 (2021). https://doi.org/10.1007/s10973-019-09163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09163-y

Keywords

Navigation