Skip to main content
Log in

Numerical modeling of entropy production in Al2O3/H2O nanofluid flowing through a novel Bessel-like converging pipe

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Optimization of thermal systems requires higher heat transfer rate and lower entropy production rate. The review of literature shows that there are limited works on entropy production rate of nanofluids flowing through a converging pipe as the available ones only considered entropy production rate in a linear converging pipe. In this study, a 2D-computational fluid dynamic model is set up to investigate entropy production rate of Al2O3 nanofluid flowing through novel Bessel-like convergent pipes in laminar flow regime. The effect of Reynolds number \(\left( {300 \le {\text{Re}} \le 1200} \right)\), nanoparticle concentration \(\left( {0 \le \varphi \le 0.1} \right)\), and convergent index \(\left( {n = 0 - 3} \right)\) on the entropy production rate, heat transfer effectiveness number, and irreversibility distribution ratio were considered. The results obtained revealed that increase in convergent index enhances viscous entropy production rate, but diminishes thermal entropy production rate. For instance, the reduction in thermal entropy production rate at \({\text{Re}} = 900\) between pipe corresponds to \(n = 0\) and \(n = 3\) was 51.98% while the increase in viscous entropy production rate was 753.65%. Furthermore, a new correlation was developed using response surface methodology to estimate the entropy production rate as a function of the Reynolds number, nanoparticle concentration, and convergence index. The overall result shows that the usage of converging pipe in place of straight pipe is more advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(A_{{\text{s}}}\) :

Surface area (m2)

Be:

Bejan number

\(c_{{\text{p}}}\) :

Specific heat capacity at constant pressure (J/kg K)

Dh :

Diameter of the pipe (m)

\(f\) :

Friction factor

\(h\) :

Coefficient of heat transfer (W/m2 K)

\(I_{{\text{a}}}\) :

Thermal effectiveness number

\(\dot{m}\) :

Mass flow rate

\(N_{{\text{s}}}\) :

Dimensionless entropy production rate

\({\text{Nu}}\) :

Nusselt number

\(\Pr\) :

Prandtl number of base fluid

Re:

Reynolds number

\(S\) :

Entropy production

\(T_{{}}\) :

Temperature of base fluid (K)

u r, u x :

Component velocity (m/s)

\(u_{{{\text{in}}}}\) :

Inlet velocity

\(r\left( x \right)\) :

Axial radius

\(R\) :

Radius

\(\alpha\) :

Thermal diffusivity (m2/s)

\(\lambda\) :

Thermal conductivity (W/m K)

\(\mu\) :

Dynamic viscosity (kg/ms)

\(\varphi\) :

Nanoparticle volume fraction (%)

\(\rho\) :

Density of base fluid (kg/m3)

\(\emptyset\) :

Irreversibility distribution function

\(\delta_{{{\text{th}}}}\) :

Thickness of thermal boundary layer

\(\Delta P\) :

Pressure drop

bulk:

Bulk

f:

Base fluid

gen:

Total

in:

Inlet

out:

Outlet

nf:

Nanofluid

p:

Nanoparticle

con:

Convergent

str:

Straight

ther:

Thermal

vis:

Viscous

References

  1. Choi, S.U., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab, Lemont (1995)

    Google Scholar 

  2. Moradi, A., Toghraie, D., Isfahani, A.H.M., Hosseinian, A.: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J. Therm. Anal. Calorimetry 137(5), 1797–1807 (2019)

    CAS  Google Scholar 

  3. Anjibabu, D., Nayeem, S.: Heat transfer phenomenon of fluids in corrugated plate heat exchangers. Int. J. Eng. Adv. Technol. 8(5), 2249–8958 (2019)

    Google Scholar 

  4. Eshgarf, H., Kalbasi, R., Maleki, A., Shadloo, M.S.: A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J. Therm. Anal. Calorimetry (2020). https://doi.org/10.1007/s10973-020-09998-w

    Article  Google Scholar 

  5. Fadodun, O.G., Amosun, A.A., Salau, A.O., Ogundeji, J.A.: Numerical investigation of thermal performance of single-walled carbon nanotube nanofluid under turbulent flow conditions. Eng. Rep. 1, e12024 (2019)

    CAS  Google Scholar 

  6. Sharif, A., Bağcı, Ö., Ameel, B., De Paepe, M., Bokisova, L.: Parametric study of a triangular cross corrugated plate. In: 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (2016)

  7. Lakshmans, K., Rajesh, D.: Fluid flow and heat transfer analysis in a converging pipe using Al2O3–water nanofluid. J. Emerg. Technol. Innov. Res. 5(5), 1–8 (2018)

    Google Scholar 

  8. Al-Sammarraie, A.T., Vafai, K.: Heat transfer augmentation through convergence angles in a pipe. Num. Heat Transf. Part A Appl. 72(3), 197–214 (2017)

    CAS  Google Scholar 

  9. Al-Sammarraie, A.T., Al-Jethelah, M., Salimpour, M.R., Vafai, K.: Nanofluids transport through a novel concave/convex convergent pipe. Num. Heat Transf. Part A Appl. 75(2), 91–109 (2019)

    CAS  Google Scholar 

  10. Rashidi, A.T., Akbarzadeh, M., Karimi, N., Masoodi, R.: Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct. J. Appl. Therm. Eng. 130, 315 (2018)

    Google Scholar 

  11. Davood, T., Omid, A.A., Ali, K., Ramin, M.: Numerical investigation of turbulent nanofluid flow and two-dimensional forced-convection heat transfer in a sinusoidal converging-diverging channel. Heat Transf. Res. 50(7), 671–695 (2019)

    Google Scholar 

  12. Muhammed, N., Sidik, C.A.: Utilization of nanofluids in minichannel for heat transfer and fluid flow augmentation. Concise Res. Des. 1(1), 18–29 (2018)

    Google Scholar 

  13. Khan, M.S., Zou, R., Yu, A.: Computational simulation of air-side heat transfer and pressure drop performance in staggered mannered twisted oval tube bundle operating in crossflow. Int. J. Therm. Sci. 161, 106748 (2021)

    Google Scholar 

  14. Pourfattah, F., Akbari, O.A., Jafrian, V., Toghraie, D., Pourfattah, E.: Numerical simulation of turbulent flow and forced heat transfer of water/CuO nanofluid inside a horizontal dimpled fin. J. Therm. Anal. Calorimetry 139, 1–14 (2019)

    Google Scholar 

  15. Xie, Y., Zheng, L., Zhang, D., Xie, G.: Entropy generation and heat transfer performances of Al2O3-water nanofluid transitional flow in rectangular channels with dimples and protrusions. Entropy 18(4), 148 (2016)

    Google Scholar 

  16. Alshare, A., Al-Kouz, W., Khan, W.: Cu–Al2O3 water hybrid nanofluid transport in a periodic structure. Processes 8(3), 2–14 (2020)

    Google Scholar 

  17. Bejan, A., Tsatsaronis, G., Moran, M., Moran, M.J.: Thermal Design and Optimization. Wiley, Oxford (1996)

    Google Scholar 

  18. Owojori, A.A., Olokuntoye, B.A., Fadodun, O.G.: Numerical investigation of second law analysis of PGGNP/H2O nanofluid in various converging pipes. Int. Nano Lett. 11, 43–57 (2021)

    Google Scholar 

  19. Kurnia, J.C., Sasmito, A.P.: Numerical evaluation of heat transfer and entropy generation of helical tubes with various cross-sections under constant heat flux condition. In: MATEC Web of Conferences, vol. 225. EDP Sciences, p. 03017 (2018)

  20. Wang, W., Zhang, Y., Liu, J., Wu, Z., Li, B., Sundén, B.: Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes. Num. Heat Transf. Part A Appl. 73(11), 788–805 (2018)

    Google Scholar 

  21. Fadodun, O.G., Amosun, A.A., Okoli, N.L., Olaloye, D.A., Ogundeji, J.A., Durodola, S.S.: Numerical investigation of entropy production in SWCNT/H2O nanofluid flowing through inwardly corrugated tube in turbulent flow regime. J. Therm. Anal. Calorimetry (2020). https://doi.org/10.1007/s10973-020-09589-9

    Article  Google Scholar 

  22. Nakhchi, M.E., Esfahani, J.A.: Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J. Therm. Anal. Calorimetry 138, 1–14 (2018)

    Google Scholar 

  23. Azadi, M., Hosseinirad, E., Hormozi, F., Rashidi, S.: Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries. J. Therm. Anal. Calorimetry 140, 1–13 (2019)

    Google Scholar 

  24. Nayak, R.K., Bhattacharyya, S., Pop, I.: Heat transfer and entropy generation in mixed convection of a nanofluid within an inclined skewed cavity. Int. J. Heat Mass Transf. 102, 596–609 (2016)

    CAS  Google Scholar 

  25. Behera, T.R.: Computational Study on Entropy Generation Minimization of Pipe Bending. Doctoral dissertation (2015)

  26. Majid, S., Mohammad, J.: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow. J. Cent. South Univ. 24(8), 1850–1865 (2017)

    CAS  Google Scholar 

  27. Shadlaghani, A., Barhemmati-Rajab, N., Zhao, W.: Exergy analysis of the alumina nanofluid through a ribbed annular channel. In: ASTFE Digital Library. Begel House Inc., Danbury (2019)

    Google Scholar 

  28. Mumtaz, M.W., Adnan, A., Mukhtar, H., Rashid, U., Danish, M.: Biodiesel production through chemical and biochemical transesterification: trends, technicalities, and future perspectives. In: Clean Energy for Sustainable Development, pp. 465–485. Academic Press, New York (2017)

    Google Scholar 

  29. Bharath, K.N., Manjunatha, G.B., Santhosh, K.: Failure analysis and the optimal toughness design of sheep–wool reinforced epoxy composites. In: Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 97–107. Woodhead Publishing, Sawston (2019)

    Google Scholar 

  30. Fadodun, O.G., Amosun, A.A., Okoli, N.L., Olaloye, D.A., Ogundeji, J.A., Durodola, S.S.: Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J. Therm. Anal. Calorimetry 143, 431 (2019)

    Google Scholar 

  31. Fadodun, O.G., Amosun, A.A., Ogundeji, J.A., Olaloye, D.O.: Numerical investigation of thermal efficiency and pumping power of Al2O3/H2O nanofluid in pipe using response surface methodology. J. Nanofluids 8(7), 1566–1576 (2019)

    Google Scholar 

  32. Fadodun, O.G., Olokuntoye, B.A., Salau, A.O., Amosun, A.A.: Numerical investigation and sensitivity analysis of entropy production in Al2O3/H2O Nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41, 1–12 (2020)

    Google Scholar 

  33. Ahmadi, A.A., Arabbeiki, M., Ali, H.M., Goodarzi, M., Safaei, M.R.: Configuration and optimization of a minichannel using water-alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials 10(5), 901 (2020)

    CAS  Google Scholar 

  34. Danish, M., Yahya, S.M., Saha, B.B.: Modelling and optimization of thermophysical properties of aqueous titania nanofluid using response surface methodology. J. Therm. Anal. Calorim. 139(5), 3051–3063 (2020)

    CAS  Google Scholar 

  35. Montazer, E., Salami, E., Yarmand, H., Kazi, S.N., Badarudin, A.: The RSM approach to develop a new correlation for density of metal-oxide aqueous nanofluids. In: IOP Conference Series: Materials Science and Engineering, vol. 210, p. 12071. IOP Publishing, Bristol (2017)

    Google Scholar 

  36. Rejeb, O., Ghenai, C., Jomaa, M.H., Bettayeb, M.: Statistical study of a solar nanofluid photovoltaic thermal collector performance using response surface methodology. Case Stud. Therm. Eng. 21, 100721 (2020)

    Google Scholar 

  37. Hatami, M., Kheirkhah, A., Ghanbari-Rad, H., Jing, D.: Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes. Case Stud. Therm. Eng. 13, 100368 (2019)

    Google Scholar 

  38. Kays, W.M.: Convective Heat and Mass Transfer. Tata McGraw-Hill Education, Pennsylvania (2012)

    Google Scholar 

  39. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  40. Xuan, Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)

    CAS  Google Scholar 

  41. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    CAS  Google Scholar 

  42. Ji, Y., Zhang, H.C., Yang, X., Shi, L.: Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids. Entropy 19(3), 108–116 (2017)

    Google Scholar 

  43. Ratts, E.B., Raut, A.G.: Entropy generation minimization of fully developed internal flow with constant heat flux. J. Heat Transf. 126(4), 656–659 (2004)

    Google Scholar 

  44. Lior, N., Sarmiento-Darkin, W., Al-Sharqawi, H.S.: The exergy fields in transport processes: their calculation and use. Energy 31, 553–578 (2006)

    CAS  Google Scholar 

  45. Fadodun, O.G., Salau, A.O., Amosun, A.A., Ibitoye, F.I.: Sensitivity analysis and evaluation of critical size of reactor using response surface methodology. Int. J. Emerg. Technol. 10(4), 184–190 (2019)

    CAS  Google Scholar 

  46. Aydar, A.Y.: Utilization of response surface methodology in optimization of extraction of plant materials. In: Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes, pp. 157–169. Intech, London (2018)

    Google Scholar 

  47. Kleijnen, J.P.: Response surface methodology. In: Handbook of Simulation Optimization, pp. 81–104. Springer, New York (2015)

    Google Scholar 

  48. Al-Rashed, A.A.: Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology. Phys. A 521, 531–542 (2019)

    CAS  Google Scholar 

  49. Rashidi, S., Bovand, M., Esfahani, J.A.: Sensitivity analysis for entropy generation in porous solar heat exchangers by RSM. J. Thermophys. Heat Transf. 31(2), 390–402 (2016)

    Google Scholar 

  50. Khuri, A.I., Mukhopadhyay, S.: Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128–149 (2010)

    Google Scholar 

  51. Design expert 8.0.7. Stat-Ease Inc., Minneapolis

  52. Andreozzi, A., Manca, O., Nardini, S., Ricci, D.: Forced convection enhancement in channels with transversal ribs and nanofluids. Appl. Therm. Eng. 98, 1044–1053 (2016)

    CAS  Google Scholar 

  53. Fluent Inc.: Fluent 14.0 Theory Guide. Fluent Inc., Pittsburgh (2012)

    Google Scholar 

  54. Wen, D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)

    CAS  Google Scholar 

  55. Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic press, New York (2014)

    Google Scholar 

  56. Heris, S.Z., Etemad, S.G., Esfahany, M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 33(4), 529–535 (2006)

    Google Scholar 

  57. Vigdorovich, I.I.: Turbulent thermal boundary layer on a plate. Reynolds analogy and heat transfer law over the entire range of Prandtl numbers. Fluid Dyn. 52(5), 631–645 (2017)

    CAS  Google Scholar 

  58. Shari, K.: How to Get Started with Design Expert Software. Stat-Ease Inc, Minneapolis (2013)

    Google Scholar 

  59. Richard, B.: Design Expert 7. Introduction. Mathematics Learning Support Centre, London (2007)

    Google Scholar 

  60. Campolongo, F., Braddock, R.: The use of graph theory in the sensitivity analysis of the model output: a second order screening method. Reliab. Eng. Syst. Saf. 64(1), 1–12 (1999)

    Google Scholar 

  61. Whitcomb, P.J., Anderson, M.J.: RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatomide Gbenga Fadodun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadodun, O.G., Amosun, A.A. & Olaloye, D.O. Numerical modeling of entropy production in Al2O3/H2O nanofluid flowing through a novel Bessel-like converging pipe. Int Nano Lett 11, 159–178 (2021). https://doi.org/10.1007/s40089-021-00333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00333-1

Keywords

Navigation