Skip to main content
Log in

Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites were prepared via solution casting method followed by vacuum drying and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermo-gravimetry (TG) and impedance analyzer for their structural, thermal and dielectric properties. The presence of γ-phase of nylon 11 both in the pure nylon 11 cast film as well as in the nylon 11/CCTO nanocomposites was confirmed using XRD analysis. Distribution of CCTO nanofillers into nylon 11 matrix was almost uniform according to SEM analysis. The shift in endothermic peak and new IR absorption bands indicated possible interaction between nylon 11 and CCTO. TG results showed that the composites have better thermal stability than pure polymer. Activation energies calculated using Flynn–Wall–Ozawa, Friedman, and Coats–Redfern methods further support the fact that the composites have better thermal stability. A kinetic model consisting of two parallel reactions was proposed for the thermal degradation process of nylon 11 as well as its 30 mass% CCTO nanocomposite. The proposed model was also verified by comparing the experimental and simulated conversion curves. For nylon 11/CCTO-30 mass% nanocomposite, room temperature dielectric permittivity as high as 168 at 50 Hz has been achieved indicating the possibility of using these materials for high-energy-density capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang W, Yu S, Sun R, Du R. Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater. 2011;59:5593–602.

    CAS  Google Scholar 

  2. Lagashetty A, Vijayanand H, Basavaraja S, Bedre MD, Venkataraman A. Preparation, characterization, and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonate nanocomposites. J Therm Anal Calorim. 2010;99:577–81.

    CAS  Google Scholar 

  3. Thomas PS, Stephen R, Bandyopadhyay S, Thomas S. Polymer nanocomposites: preparation, properties and applications. Rubber Fibers Plast Int. 2007;2:49–56.

    Google Scholar 

  4. Indolia AP, Gaur MS. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim. 2013;113:821–30.

    CAS  Google Scholar 

  5. Gaur MS, Indolia AP. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.

    CAS  Google Scholar 

  6. Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, Calberg C, Jerome R. Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. J Therm Anal Calorim. 2007;87:101–4.

    CAS  Google Scholar 

  7. Yan L, Xu Z, Zhang J. Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. J Therm Anal Calorim. 2017;130:1987–96.

    CAS  Google Scholar 

  8. Dwivedi M, Alam S, Verma GL. Effect of nano-barium titanate on thermal stability of ferrite filled poly-ether-ether-ketone (PEEK) composites. J Therm Anal Calorim. 2004;77:947–55.

    CAS  Google Scholar 

  9. Ramdani N, Derradji M, Wang J, Mokhnache E, Liu W, Liu Y, Dong W. Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids. J Therm Anal Calorim. 2016;126:561–70.

    CAS  Google Scholar 

  10. Osińska K, Czekaj D. Thermal behavior of BST//PVDF ceramic–polymer composites. J Therm Anal Calorim. 2013;113:69–76.

    Google Scholar 

  11. Beier CW, Sanders JM, Brutchey RL. Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. J Phys Chem C. 2013;117:6958–65.

    CAS  Google Scholar 

  12. Rajeshwari P, Dey TK. Structural and thermal properties of HDPE/n-AlN polymer nanocomposites. J Therm Anal Calorim. 2014;118:1513–30.

    CAS  Google Scholar 

  13. Gaur MS, Indolia AP, Rogachev AA, Rahachou AV. Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J Therm Anal Calorim. 2015;122:1403–16.

    CAS  Google Scholar 

  14. Gaur MS, Singh PK, Ali A, Singh R. Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites. J Therm Anal Calorim. 2014;117:1407–17.

    CAS  Google Scholar 

  15. Cibulková Z, Vykydalová A, Chochulová A, Šimon P, Alexy P, Omaníková L. Thermooxidative stability of polypropylene/TiO2 and polypropylene/layered silicate nanocomposites. J Therm Anal Calorim. 2018;131:1491–7.

    Google Scholar 

  16. Liu T, Lim KP, Tjiu WC, Pramoda KP, Chen ZK. Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer. 2003;44:3529–35.

    CAS  Google Scholar 

  17. Wang B, Hu G, Zhao X, Gao F. Preparation and characterization of nylon 6 11 copolymer. Mater Lett. 2006;60:2715–7.

    CAS  Google Scholar 

  18. Skrovanek DJ, Painter PC, Coleman MM. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules. 1986;19:699–705.

    CAS  Google Scholar 

  19. Mago G, Kalyon DM, Fisher FT. Nanocomposites of polyamide-11 and carbon nanostructures: development of microstructure and ultimate properties following solution processing. J Polym Sci, Part B: Polym Phys. 2011;49:1311–13211.

    CAS  Google Scholar 

  20. Medeiros DG, Jardim PM, de Tatagiba MKV, d’Almeida JRM. Composites of recycled nylon 11 and titanium based nanofillers. Polym Test. 2015;42:108–14.

    CAS  Google Scholar 

  21. Petrovicova E, Knight R, Schadler LS, Twardowski TE. Nylon 11/Silica nanocomposite coatings applied by the hvof process. II. Mechanical and barrier properties. J Appl Polym Sci. 2000;78:2272–89.

    CAS  Google Scholar 

  22. Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 2000;151:323–5.

    CAS  Google Scholar 

  23. Thomas P, Dwarakanath K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267–72.

    CAS  Google Scholar 

  24. Thomas P, Satapathy S, Dwarakanath K, Varma KBR. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett. 2010;4:632–43.

    CAS  Google Scholar 

  25. Yang Y, Zhu BP, Lu ZH, Wang ZY, Fei CL, Yin D, Xiong R, Shi J, Chi QG, Lei QQ. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl Phys Lett. 2013;102:042904-1–5.

    Google Scholar 

  26. Ernest Ravindran RS, Thomas P, Renganathan S. Studies on the structural, thermal, and dielectric properties of fabricated Nylon 6,9/CaCu3Ti4O12 nanocomposites. Sci Eng Compos Mater. 2015;24:185–94.

    Google Scholar 

  27. Kawaguchi A, Ikawa T, Fujiwara Y, Tabuchi M, Konobe K. Polymorphism in lamellar single crystals of nylon 11. J Macromol Sci Part B Phys. 1981;20:1–20.

    Google Scholar 

  28. Yu HH. Crystal phase transformations in nylon 11. Mater Chem Phys. 1998;56:289–93.

    CAS  Google Scholar 

  29. Heidemann VG, Zahn H. Beitrag zur deutung des infrarotspektrums von nylon 6,6. Makromol Chem. 1963;62:123–33.

    CAS  Google Scholar 

  30. Achhammer BG, Reinhart FW, Kline GM. Mechanism of the degradation of polyamides. J Appl Chem. 1951;1:301–20.

    CAS  Google Scholar 

  31. Ramaswami Sachidanandan ER, Paramanandam T, Sahadevan R. A comparative study on dielectric, structure, and thermal behavior of micro- and nano-sized CCTO in nylon 6,9 matrix. Polym Compos. 2017;38:927–35.

    CAS  Google Scholar 

  32. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiasl S, Dehzangi A. Preparation, characterization and thermal degradation of Polyimide (4-APS/BTDA)/SiO2 composite films. Int J Mol Sci. 2012;13:4860–72.

    PubMed  PubMed Central  Google Scholar 

  33. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–8.

    CAS  Google Scholar 

  34. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  35. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    CAS  Google Scholar 

  36. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    CAS  Google Scholar 

  37. Wang L, Lei H, Liu J, Bu Q. Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC Adv. 2018;8:2196–202.

    CAS  Google Scholar 

  38. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Google Scholar 

  39. Gu A, Yu Z, Li Y. A kinetic analysis on thermal degradation of poly(phenylene sulfide ether). J Appl Polym Sci. 2009;114:911–8.

    CAS  Google Scholar 

  40. Chaing CL, Wang FY, Ma CCM, Chang HR. Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid ceramers prepared by the sol–gel method. Polym Degrad Stab. 2002;77:273–8.

    Google Scholar 

  41. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  42. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of thermokinetic analysis: part A: the ICTAC thermokinetic project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    CAS  Google Scholar 

  43. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Central Power Research Institute, Bangalore, India, for the financial support (CPRI Project No. IHRD/2015/DG/3/15122015) and for the permission given to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P., Ashokbabu, A. & Vaish, R. Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites. J Therm Anal Calorim 141, 1123–1135 (2020). https://doi.org/10.1007/s10973-019-09105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09105-8

Keywords

Navigation