Skip to main content

Advertisement

Log in

Effect on dielectric, structural and thermal behaviour of \(\hbox {CaCu}_{{3}}\hbox {Ti}_{{4}}\hbox {O}_{{12}}\) in a Nylon 11 matrix

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper discusses the probability of obtaining high-dielectric permittivity from ceramic–polymer composites by mixing higher dielectric material, \(\hbox {CaCu}_{{3}}\hbox {Ti}_{{4}}\hbox {O}_{{12}}\) (CCTO) in a Nylon 11 matrix by the melt-mixing method. The volume percentage of addition of CCTO micro-particles was from 0 to 20 vol%. The dielectric, structural morphology and thermal properties of the composites were analysed using an impedance analyser, a scanning electron microscope, a differential scanning calorimeter and a thermogravimetric analyser, respectively. The permittivity of 50 vol% of the composite is 12, which is increased to that of virgin Nylon 11 of 5.8. Different theoretical models were employed to rationalize the dielectric behaviour of the composite and found to be accurate with that of the experimental data. The thermal behaviour of the composites was good after the addition of CCTO micro-particles into it. It provides the means to employ the ceramic–polymer composites at low temperature with less permittivity and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Newnham R E 1986 Annu. Rev. Mater. Sci. 16 47

    Article  CAS  Google Scholar 

  2. Gregorio R, Cestari M and Bernardino F E 1996 J. Mater. Sci. 31 2925

    Article  CAS  Google Scholar 

  3. Chan H L W, Cheung M C and Choy C L 1999 Ferroelectrics 224 113

    Article  Google Scholar 

  4. Dang Z M, Shen Y and Nan C W 2002 Appl. Phys. Lett. 81 4814

    Article  CAS  Google Scholar 

  5. Arbatti M, Shan X and Cheng Z-Y 2007 Adv. Mater. 19 1369

    Article  CAS  Google Scholar 

  6. Devaraju N G, Lee B I and Kim E S 2005 Microelectron. Eng. 82 71

    Article  CAS  Google Scholar 

  7. Lee B W, Abothu I R and Raj P M 2006 Scr. Mater. 54 1231

    Article  CAS  Google Scholar 

  8. Choi Seung-Hoon, Kim II-Doo, Hong Jae-Min, Park Ki-Hong and Oh Seong-Geun 2007 Mater. Lett. 61 2478

    Article  CAS  Google Scholar 

  9. Kobayashi Y, Tanase T, Tabata T, Miwa T and Konno M 2008 J. Eur. Ceram. Soc. 28 117

    Article  CAS  Google Scholar 

  10. Zhi-Min Dang, You-Qin Lin, Hai-Ping Xu, Chang-Yong Shi, Sheng-Tao Li and Jinbo Bai 2008 Adv. Funct. Mater. 18 1509

    Article  CAS  Google Scholar 

  11. Wang F, Zhou D and Hu Y 2009 Phys. Status Solidi A 206 2632

    Article  CAS  Google Scholar 

  12. Cheng Z-Y, Katiyar R S, Yao X and Guo A 1997 Phys. Rev. B: Condens. Matter Mater. Phys. 55 8165

    Article  CAS  Google Scholar 

  13. Subramanian M A, Li D, Duan N, Reisner B A and Sleight A W 2000 J. Solid State Chem. 151 323

    Article  CAS  Google Scholar 

  14. Arbatti M 2004 M. S. Thesis, Auburn University

  15. Deschanvres A, Raveau B and Tollemer F 1967 Bull. Soc. Chim. Fr. 4077

  16. Thomas P, Dwarakanath K, Varma K B R and Kutty T R N 2009 J. Therm. Anal. Calorim. 95 267

    Article  CAS  Google Scholar 

  17. Ramesh S and Wen L C 2010 Ionics 16 255

    Article  CAS  Google Scholar 

  18. Manasi S and Fahim M 2012 Polym. Compos. 33 675

    Article  CAS  Google Scholar 

  19. Thomas P, Ernest Ravindran R S and Varma K B R 2014 J. Therm. Anal. Calorim. 115 1311

    Article  CAS  Google Scholar 

  20. Amaral F, Rubinger C, Henry F, Costa L C, Valente M A and Barros-Timmons A 2008 J. Non-Cryst. Solids 353 5321

    Article  CAS  Google Scholar 

  21. Thomas P, Ernest Ravindran R S and Varma K B R 2014 Polym. Eng. Sci. 54 551

    Article  CAS  Google Scholar 

  22. Nair S S, Ramesh C and Tashiro K 2006 Macromolecules 39 2841

    Article  CAS  Google Scholar 

  23. Zhang Q, Mo Z, Zhang H, Liu S and Cheng S Z D 2001 Polymers 42 5543

    Article  CAS  Google Scholar 

  24. Fornes T D and Paul D R 2004 Macromolecules 37 7698

    Article  CAS  Google Scholar 

  25. Kim K G, Newman B A and Scheinbeim J I 1985 J. Polym. Sci. Polym. Phys. 23 2477

    Article  CAS  Google Scholar 

  26. Cui X, Qing S and Yan D 2005 Eur. Polym. J. 41 3060

    Article  CAS  Google Scholar 

  27. Wan J, Bu Z-Y, Li C, Fan H and Li B-G 2011 Thermochim. Acta 524 117

  28. Thomas P, Ernest Ravindran R S and Varma K B R 2012 IEEE 10th ICPADM, Bangalore, India

  29. Ernest Ravindran R S, Thomas P and Renganathan S 2017 Polym. Compos. 38 927

    Article  CAS  Google Scholar 

  30. Ernest Ravindran R S, Thomas P and Renganathan S 2017 Sci. Eng. Compos. Mater. 24 185

    Article  CAS  Google Scholar 

  31. Yang W, Yu S, Sun R and Du R 2011 Acta Mater. 59 5593

    Article  CAS  Google Scholar 

  32. Hussien B 2011 Eur. J. Sci. Res. 52 236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Ernest Ravindran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernest Ravindran, R.S., Thomas, P. & Renganathan, S. Effect on dielectric, structural and thermal behaviour of \(\hbox {CaCu}_{{3}}\hbox {Ti}_{{4}}\hbox {O}_{{12}}\) in a Nylon 11 matrix. Bull Mater Sci 42, 28 (2019). https://doi.org/10.1007/s12034-018-1707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1707-y

Keywords

Navigation