Skip to main content
Log in

Physical assessments on variable thermal conductivity and heat generation/absorption in cross magneto-flow model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work focused here is a mixed convective MHD flow of cross fluid in the presence of heat generation/absorption and variable thermal conductivity over a bidirectional stretchable sheet. To elaborate the mechanism of heat transfer is analyzed in view of non-Fourier heat flux based upon Cattaneo–Christov theory. The influence of a simple isothermal model of homogeneous–heterogeneous reactions is further used for solute concentration. As a result, the relevant Buongiorno fluid model is utilized in mathematical modeling and then it is simplified through lubrication technique. By using appropriate transformations, the raised PDEs initially converted to ODEs. Convergent solutions of ODEs are obtained by the implementation of the numerical procedure bvp4c technique. However, the velocity, temperature and concentration profiles have been sketched by distinct physical flow parameter. Drag coefficients and heat transport are also computed numerically. Our results reveal that temperature profile has an inverse relation between the relaxation parameter and variable thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(T_{\infty }\) :

Ambient temperature of fluid

\(p,q\) :

Concentrations of chemical species \(P,Q\)

\(D_{\text{P}} ,\;D_{\text{Q}}\) :

Diffusion coefficient of species \(P\) and \(Q\)

\(B_{0}^{2}\) :

Magnetic field strength

\(n\) :

Power-law index

\(k_{\text{m}} ,\;K_{\text{s}}\) :

Rate coefficient of homogeneous/heterogeneous reactions

\(x,y,z\) :

Space coordinates

\(U_{\text{w}} \left( {x,t} \right),\;V_{\text{w}} \left( {y,t} \right)\) :

Stretching velocities

\(T\) :

Temperature of fluid

\(K\left( T \right)\) :

Variable thermal conductivity

\(u,v,w\) :

Velocity components

\(f,g\) :

Dimensionless velocities

\(C_{\text{fx}}\) :

Skin friction

Sc:

Schmidt number

M :

Magnetic parameter

\(\Pr\) :

Prandtl number

\(K\) :

Strength coefficient homogenous reaction

\({\text{Re}}_{\text{x}}\) :

Local Reynolds number

\({\text{We}}_{1} ,\;{\text{We}}_{2}\) :

Weissenberg numbers

\({\text{Nu}}_{\text{x}}\) :

Local Nusselt number

\(h_{\text{f}}\) :

Heat transfer coefficient

\(\left( {\rho c} \right)_{\text{f}}\) :

Heat capacity of fluid

\(\nu\) :

Kinematics viscosity

\(\varepsilon_{1}\) :

Ratio of diffusion coefficient

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(k\) :

Thermal conductivity

\(k_{\text{T}}\) :

Thermal conductivity time of the heat discussion

\(\varGamma\) :

Time material constant

\(\alpha\) :

The ratio of stretching rates parameter

\(\gamma_{1}\) :

Biot number

\(c_{\text{p}}\) :

Specific heat at constant pressure

\(\phi\) :

Dimensionless concentration

\(\lambda_{\text{T}}\) :

Relaxation time of heat flux

\(\rho\) :

Density

\(\varepsilon\) :

Variable thermal conductivity parameter

\(\gamma\) :

Thermal relaxation parameter

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Heat generation/absorption

\(\eta\) :

Dimensionless variable

References

  1. Reddya JVR, Sugunamma V, Sandeep N, Sulochana C. Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium. J Niger Math Soc. 2016;35:48–65.

    Article  Google Scholar 

  2. Khan MI, Hayat T, Waqas M, Alsaedi A. Outcome for chemically reactive aspect in flow of tangent hyperbolic material. J Mol Liq. 2017;230:143–51.

    Article  CAS  Google Scholar 

  3. Sulochana C, Ashwinkumar GP, Sandeep N. Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate. Alex Eng J. 2018;57:2573–2584.

    Article  Google Scholar 

  4. Sultan F, Shahzad M, Ali M, Khan WA. The reaction routes comparison with respect to slow invariant manifold and equilibrium points. AIP Adv. 2019;9:015212. https://doi.org/10.1063/1.5050265.

    Article  CAS  Google Scholar 

  5. Animasaun IL, Raju CSK, Sandeep N. Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex Eng J. 2016;55:1595–606. https://doi.org/10.1016/j.aej.2016.01.018.

    Article  Google Scholar 

  6. Tanveer T, Hayat A Alsaedi, Ahmad B. Mixed convective peristaltic flow of Sisko fluid in curved channel with homogeneous–heterogeneous reaction effects. J Mol Liq. 2017;233:131–8.

    Article  CAS  Google Scholar 

  7. Hayat T, Saif RS, Ellahi R, Muhammad T, Ahmad B. Numerical study for Darcy–Forchheimer flow due to a curved stretching surface with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. Results Phys. 2017;7:2886–92.

    Article  Google Scholar 

  8. Hayat T, Ayub S, Alsaedi A. Homogeneous–heterogeneous reactions in curved channel with porous medium. Results Phys. 2018;9:1455–61.

    Article  Google Scholar 

  9. Shahzad M, Sultan F, Haq I, Ali M, Khan WA. C-matrix and invariants in chemical kinetics: a mathematical concept. Pramana J Phys. 2019;92:64. https://doi.org/10.1007/s12043-019-1723-5.

    Article  Google Scholar 

  10. Shahzad M, Sultan F, Shah SIA, Ali M, Khan HA, Khan WA. Physical assessments on chemically reacting species and reduction schemes for the approximation of invariant manifolds. J Mol Liq. 2019;285:237–43.

    Article  CAS  Google Scholar 

  11. Shahzad M, Sultan F, Ali M, Khan WA, Irfan M. Slow invariant manifold assessments in multi-route reaction mechanism. J Mol Liq. 2019;284:265–70.

    Article  CAS  Google Scholar 

  12. Sultan F, Khan WA, Ali M, Shahzad M, Khan F, Waqas M. Slow invariant manifolds and its approximation in a multi-route reaction mechanism: a case study of iodized H2/O mechanism. J Mol Liq. 2019;288:111048.

    Article  CAS  Google Scholar 

  13. Bahiraei M, Alighardashi M. Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. J Mol Liq. 2016;219:117–27. https://doi.org/10.1016/j.molliq.2016.03.007.

    Article  CAS  Google Scholar 

  14. Bahiraei M, Khosravi R, Heshmatian S. Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl Therm Eng. 2017;123:266–76. https://doi.org/10.1016/j.applthermaleng.2017.05.090.

    Article  Google Scholar 

  15. Khan WA, Sultan F, Ali M, Shahzad M, Khan M, Irfan M. Consequences of activation energy and binary chemical reaction for 3D flow of cross-nanofuid with radiative heat transfer. J Braz Soc Mech Sci Eng. 2019;41:4. https://doi.org/10.1007/s40430-018-1482-0.

    Article  CAS  Google Scholar 

  16. Bahiraei M, Mazaheri N, Alighardashi M. Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: a novel application for efficient use of energy. Appl Therm Eng. 2017;124:1213–23. https://doi.org/10.1016/j.applthermaleng.2017.06.106.

    Article  CAS  Google Scholar 

  17. Bahiraei M, Gharagozloo K, Alighardashi M, Mazaheri N. CFD simulation of irreversibilities for laminar flow of a power-law nanofluid within a mini channel with chaotic perturbations: an innovative energy-efficient approach. Energy Convers Manag. 2017;144:374–87. https://doi.org/10.1016/j.enconman.2017.04.068.

    Article  Google Scholar 

  18. Bhatti MM, Zeeshan A, Ellahi R. Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave. Pramana J Phys. 2017;89:48.

    Article  Google Scholar 

  19. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  20. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. MHD free convection in an eccentric semi-annulus filled with nanofluid. J Taiwan Inst Chem Eng. 2014;45(4):1204–16.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M, Kataria HR, Mittal AS. Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium. J Mol Liq. 2018;257:12–25.

    Article  CAS  Google Scholar 

  22. Khan WA, Ali M, Sultan F, Shahzad M, Khan M, Irfan M. Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magnetofluid. Pramana J Phys. 2019;92:16. https://doi.org/10.1007/s12043-018-1678-y.

    Article  CAS  Google Scholar 

  23. Shehzad SA, Hayat T, Alsaed A, Meraj MA. Cattaneo–Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liquid. Appl Math Mech Engl Ed. 2017;38(10):1347–56.

    Article  Google Scholar 

  24. Muhammad S, Ali G, Shah SIA, Irfan M, Khan WA, Ali M, Sultan F. Numerical treatment of activation energy for the three-dimensional flow of a cross magnetonanoliquid with variable conductivity. Pramana J Phys. 2019;93:40. https://doi.org/10.1007/s12043-019-1800-9.

    Article  Google Scholar 

  25. Megahed AM. Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-newtonian maxwell fluid over an unsteady stretching sheet with slip velocity. Chin Phys B. 2013;22:094701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faisal Sultan or Mehboob Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, F., Khan, W.A., Shahzad, M. et al. Physical assessments on variable thermal conductivity and heat generation/absorption in cross magneto-flow model. J Therm Anal Calorim 140, 1069–1078 (2020). https://doi.org/10.1007/s10973-019-08957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08957-4

Keywords

Navigation