Skip to main content
Log in

Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a typical combined cycle power generation unit in Iran is simulated by a mathematical method in order to perform sensitivity analysis on environmental emission and electricity price. The results of this study demonstrate that the efficiency of the power plant depends on both gas turbine design parameters such as gas turbine inlet temperature, compressor pressure ratio and steam cycle design parameters such as HRSG pinch point temperature, condenser pressure. The results demonstrate that an increase in TIT and compressor pressure ratio have a significant effect on exergy efficiency and destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(c\) :

Cost per exergy unit ($ MJ−1)

\(c_{\text{f}}\) :

Cost of fuel per energy unit ($ MJ−1)

\(\dot{C}\) :

Cost flow rate ($ s−1)

\(c_{\text{p}}\) :

Specific heat at constant pressure (kJ kg−1 K−1)

\({\text{CRF}}\) :

Capital recovery factor

\(E\) :

Exergy MJ kg−1

f :

Exergoeconomic factor

\(\dot{E}\) :

Exergy flow rate (MW)

\(\dot{E}_{\text{D}}\) :

Exergy destruction rate (MW)

\({\dot{\text{E}}}_{\text{W}}\) :

Exergy rate of work (MW)

\(e\) :

Specific exergy (kJ kg−1)

\({\text{e}}_{\text{f}}\) :

Chemical exergy of the fuel (kJ kg−1)

\(i\) :

Annual interest rate (%)

\(h\) :

Specific enthalpy (kJ kg−1)

\(h_{0}\) :

Specific enthalpy at environmental state (kJ kg−1)

LHV:

Lower heating value (kJ kg−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(n\) :

Number of years

\(N\) :

Number of hours of plant operation per year

\({\text{PP}}\) :

Pinch point

\(\dot{Q}\) :

Heat transfer rate (kW)

\(r_{\text{AC}}\) :

Compressor pressure ratio

\(s\) :

Specific entropy (kJ kg−1 K−1)

\(s_{0}\) :

Specific entropy at environmental state (kJ kg−1 K−1)

\(T_{0}\) :

Absolute temperature (K)

\(\dot{W}_{\text{net}}\) :

Net power output (MW)

\(Z\) :

Capital cost of a component ($)

\(\dot{Z}\) :

Capital cost rate ($ s−1)

\(\eta\) :

Isentropic efficiency

\(\xi\) :

Coefficient of fuel chemical exergy

\(\sigma\) :

Standard deviation

\(\varPhi\) :

Maintenance factor

π :

Dimensionless pressure values

θ :

Dimensionless temperature values

a:

Air

AC:

Air compressor

CC:

Combustion chamber

ch:

Chemical

Cond:

Condenser

D:

Exergy destruction

f:

Fuel

GT:

Gas turbine

HP:

High pressure

HRSG:

Heat recovery steam generator

i:

ith trial vector

k:

kth component

LP:

Low pressure

ph:

Physical

tot:

Total

ST:

Steam turbine

sys:

System

w:

Water

References

  1. Hoseinzadeh S, Hadi Zakeri M, Shirkhani A, Chamkha AJ. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J Renew Sustain Energy. 2019. https://doi.org/10.1063/1.5046512.

    Article  Google Scholar 

  2. Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy. 2017. https://doi.org/10.1063/1.5000288.

    Article  Google Scholar 

  3. Yousef Nezhad ME, Hoseinzadeh S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J Renew Sustain Energy. 2017. https://doi.org/10.1063/1.5010828.

    Article  Google Scholar 

  4. Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08203-x.

    Article  Google Scholar 

  5. Hoseinzadeh S, Ghasemiasl R, Havaei D, Chamkha AJ. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J Mol Liq. 2018;271:655–60.

    Article  CAS  Google Scholar 

  6. Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transf 1–7 (2019).

  7. Yari A, Hosseinzadeh S, Golneshan AA, Ghasemiasl R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In: ASME/JSME/KSME 2015 joint fluids engineering conference, AJKFluids 2015 (2015), vol. 1.

  8. Ghasemiasl R, Hoseinzadeh S, Javadi MA. Numerical analysis of energy storage systems using two phase-change materials with nanoparticles. J Thermophys Heat Transf. 2018;32:440–8.

    Article  CAS  Google Scholar 

  9. Ahmadi P, Dincer I. (2018). Exergoeconomics. In Comprehensive Energy Systems (Vol. 1–5, pp. 340–376). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809597-3.00107-3.

    Chapter  Google Scholar 

  10. Ahmadi P, Dincer I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl Therm Eng. 2011;31:2529–40.

    Article  Google Scholar 

  11. Ahmadi P, Dincer I. Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit. Energy Convers Manag. 2011;52:2296–308.

    Article  Google Scholar 

  12. Khalilarya S, Jafarmadar S, Abadi A. Exegetic modeling and second law based optimization of cogeneration heat and power system using evolutionary algorithm (genetic algorithm) (pp. 17–25). ASME International; (2011). https://doi.org/10.1115/ihtc14-22113.

  13. Sahoo PK. Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Appl Therm Eng. 2008;28:1580–8.

    Article  Google Scholar 

  14. Boyaghchi FA, Heidarnejad P. Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on organic rankine cycle for domestic application. Energy Convers Manag. 2015;97:224–34.

    Article  Google Scholar 

  15. Boyaghchi FA, Molaie H. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method. Energy Convers Manag. 2015;99:374–86.

    Article  Google Scholar 

  16. Kwak HY, Kim DJ, Jeon JS. Exergetic and thermoeconomic analyses of power plants. Energy. 2003;28:343–60.

    Article  Google Scholar 

  17. Surendhar A, Sivasubramanian V, Vidhyeswari D, Deepanraj B. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. J Therm Anal Calorim. 2019;136:185–97.

    Article  CAS  Google Scholar 

  18. Matheswaran MM, Arjunan TV, Somasundaram D. Energetic, exergetic and enviro-economic analysis of parallel pass jet plate solar air heater with artificial roughness. J Therm Anal Calorim. 2019;136:5–19.

    Article  CAS  Google Scholar 

  19. Anand S, Tyagi SK. Exergy analysis and experimental study of a vapor compression refrigeration cycle: a technical note. J Therm Anal Calorime. 2012;110:961–71. https://doi.org/10.1007/s10973-011-1904-z.

    Article  CAS  Google Scholar 

  20. Govin OV, Diky VV, Kabo GJ, Blokhin AV. Evaluation of the chemical exergy of fuels and petroleum fractions. J Therm Anal Calorim. 2000;62:123–33.

    Article  CAS  Google Scholar 

  21. Murugapoopathi S, Vasudevan D. Energy and exergy analysis on variable compression ratio multi-fuel engine. J Therm Anal Calorim. 2019;136:255–66.

    Article  CAS  Google Scholar 

  22. Singh G, Singh PJ, Tyagi VV, Pandey AK. Thermal and exergoeconomic analysis of a dairy food processing plant. J Therm Anal Calorim. 2019;136:1365–82.

    Article  CAS  Google Scholar 

  23. Saleh S, Pirouzfar V, Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants. J Thermal Anal Calorim. 2018;136:1817–30.

    Article  Google Scholar 

  24. Si Ningning, Zhao Zhigang, Sheng Su, Han Pengshuai, Sun Zhijun, Jun Xu, Cui Xiaoning, Song Hu, Wang Yi, Jiang Long, Zhou Yingbiao, Chen Gang, Xiang Jun. Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant. Energy Convers Manag. 2017;147:155–65.

    Article  Google Scholar 

  25. Abuelnuor AAA, Saqr KM, Mohieldein SAA, Dafallah KA, Abdullah MM, Nogoud YAM. Exergy analysis of Garri“2”180 MW combined cycle power plant. Renew Sustain Energy Rev. 2017;79:960–9.

    Article  Google Scholar 

  26. Javadi MA, Hoseinzadeh S, Khalaji M, Ghasemiasl R. Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant. Sādhanā. 2019;44:121.

    Article  Google Scholar 

  27. Lamas WDQ. Exergoeconomic methodology applied to energy efficiency analysis of industrial power transformers. Int J Electr Power Energy Syst. 2013;53:348–56.

    Article  Google Scholar 

  28. Sahraie H, Mirani MR, Ahmadi MH, Ashouri M. Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump. Energy Convers Manag. 2015;99:81–91.

    Article  Google Scholar 

  29. Javadi MA, Ghomashi H. Thermodynamics analysis and optimization of abadan combined cycle power plant. Indian J Sci Technol. 2016. https://doi.org/10.17485/ijst/2016/v9i7/87770.

    Article  Google Scholar 

  30. Sahin AZ, Al-Sharafi A, Yilbas BS, Khaliq A. Overall performance assessment of a combined cycle power plant: an exergo-economic analysis. Energy Convers Manag. 2016;116:91–100.

    Article  Google Scholar 

  31. Hoseinzadeh S, Sahebi SAR, Ghasemiasl R, Majidian AR. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur Phys J Plus. 2017;132:197. https://doi.org/10.1140/epjp/i2017-11455-3.

    Article  CAS  Google Scholar 

  32. Hosseinzadeh S, Galogahi MR, Bahrami A. Performance prediction of a turboshaft engine by using of one dimensional analysis. Int J Recent Adv Mech Eng. 2014;3:99–108.

    Article  Google Scholar 

  33. Hosseinzadeh S, Bahrami A, Abbasi E, Absalan F. Performance prediction of a turboshaft engine through the use of losses models. Int J Recent Adv Mech Eng. 2014;3:35–45.

    Article  Google Scholar 

  34. Rosen MA, Dincer I, Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy. 2008;36:128–37.

    Article  Google Scholar 

  35. Ahmadi P, Dincer I, Rosen MA. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy. 2011;36:5886–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hoseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, M.A., Hoseinzadeh, S., Ghasemiasl, R. et al. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. J Therm Anal Calorim 139, 519–525 (2020). https://doi.org/10.1007/s10973-019-08399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08399-y

Keywords

Navigation