Skip to main content
Log in

Optimum constituents for MHD heat transfer of nanofluids within porous cavities

A Taguchi analysis in natural and mixed convection configurations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the Taguchi experimental design method is utilized to determine optimum combination of constituents for MHD heat transfer of nanofluids in porous cavities in natural and mixed convection configurations. The tested constituents include ethylene glycol and water for the base fluid, silver, aluminum oxide, carbon nanotubes, cobalt, copper, copper oxide, ferroferric oxide, and titanium oxide for the nanoparticles, and aluminum foam and glass balls for the solid matrix. The governing equations are those presented by Buongiorno that include Brownian diffusion and thermophoresis effect which are solved numerically. In the Taguchi experimental design method, the mean Nusselt number is considered as the performance parameter and an L16 orthogonal array is used as the experimental plan for the control factors. Analysis is undertaken for several Hartmann numbers (i.e., \(Ha = 0, \,1,\, 30\)). The optimum design in all of the circumstances is achieved for CuO–water nanofluid within glass balls. In the mixed convection configuration, the most important factor affecting the heat transfer is found to be the solid matrix material. But, in the natural convection configuration, with an increase in the strength of the magnetic field, the highest contribution shifts from the nanoparticles type to the solid matrix material. The outcomes of this contribution provide insight into design of thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(a_{\text{i}}\) :

Defined in Eq. (17)

\(B_{0}\) :

Externally applied horizontal magnetic field \(\left( {\text{T}} \right)\)

\(C\) :

Specific heat \(\left( {{\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

dB:

Decibel

D B :

Brownian diffusion coefficient \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

D T :

Thermophoretic diffusion coefficient \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

g :

Gravitational acceleration \(\left( {{\text{m}}\,{\text{s}}^{ - 2} } \right)\)

Ha :

Hartmann number

k :

Thermal conductivity \(\left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

K :

Permeability \(\left( {{\text{m}}^{2} } \right)\)

L :

Size of the cavity \(\left( {\text{m}} \right)\)

Le :

Lewis number

N TB :

Ratio between thermophoresis and Brownian coefficients

Nu :

Local Nusselt number

\(\overline{Nu}\) :

Mean Nusselt number

P :

Pressure \(\left( {\text{Pa}} \right)\)

Pe :

Peclet number

Ra :

Rayleigh number

\({\text{SNR}}\) :

Signal-to-noise ratio \(\left( {\text{dB}} \right)\)

t :

Time \(\left( {\text{s}} \right)\)

T :

Temperature \(\left( {\text{K}} \right)\)

u, v :

Velocity components \(\left( {{\text{m}}\,{\text{s}}^{ - 1} } \right)\)

\(u_{\text{in}}\) :

Inlet velocity \(\left( {{\text{m}}\,{\text{s}}^{ - 1} } \right)\)

V :

Velocity vector \(\left( {{\text{m}}\,{\text{s}}^{ - 1} } \right)\)

\(x, y\) :

Cartesian coordinates \(\left( {\text{m}} \right)\)

\(X, Y\) :

Dimensionless Cartesian coordinates

\(\alpha\) :

Thermal diffusivity \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(\beta\) :

Volumetric thermal expansion coefficient \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\varepsilon\) :

Porosity

\(\bar{\varPhi }\) :

Nanoparticles fraction

\(\varPhi\) :

Dimensionless nanoparticles fraction

\(\mu\) :

Dynamic viscosity \(\left( {{\text{N}}\,{\text{s}}\,{\text{m}}^{ - 2} } \right)\)

\(\xi\) :

Stream function temperature, or nanoparticles fraction in Eq. (25)

\(\varTheta\) :

Dimensionless temperature

\(\rho\) :

Density \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\sigma\) :

Electrical conductivity \(\left( {\varOmega^{ - 1} \,{\text{m}}^{ - 1} } \right)\)

\(\tau\) :

Dimensionless time

\(\psi\) :

Stream function \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

Ψ:

Dimensionless stream function

\(\omega\) :

Defined by \(\left( {\rho c} \right)_{\text{mf}} /\left( {\rho c} \right)_{\text{f}}\)

Ω:

Control volume

0:

Reference value

c:

Cold

f:

Base fluid

h:

Hot

mf:

Clear fluid-saturated porous medium

mnf:

Nanofluid-saturated porous medium

nf:

Nanofluid

p:

Nanoparticle

s:

Solid matrix

AF:

Aluminum foam

ANOVA:

Analysis of variance

EG:

Ethylene glycol

GB:

Glass balls

MHD:

Magnetohydrodynamics

W:

Water

References

  1. Akbarzadeh P. The onset of MHD nanofluid convection between a porous layer in the presence of purely internal heat source and chemical reaction. J Therm Anal Calorim. 2018;131(3):2657–72.

    Article  CAS  Google Scholar 

  2. Hassan M, Marin M, Alsharif A, Ellahi R. Convection heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382:2749–53.

    Article  CAS  Google Scholar 

  3. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84.

    Article  CAS  Google Scholar 

  4. Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Conjugate heat transfer of Al2O3–water nanofluid in a square cavity heated by a triangular thick wall using Buongiorno’s two-phase model. J Therm Anal Calorim. 2019;135(1):161–76.

    Article  CAS  Google Scholar 

  5. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    Article  CAS  Google Scholar 

  6. Sun Q, Pop I. Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int J Therm Sci. 2011;50(11):2141–53.

    Article  CAS  Google Scholar 

  7. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  8. Zahmatkesh I. Entropy generation of nanofluids during natural convection in rectangular porous enclosures. J Solid Fluid Mech. 2014;4(3):171–84.

    Google Scholar 

  9. Grosan T, Revnic C, Pop I, Ingham DB. Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2015;87:36–41.

    Article  CAS  Google Scholar 

  10. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  11. Sheremet MA, Dinarvand S, Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Physica E. 2015;69:332–41.

    Article  CAS  Google Scholar 

  12. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9–10):2002–18.

    Article  CAS  Google Scholar 

  13. Ashorynejad HR, Hoseinpour B. Investigation of different nanofluids effect on entropy generation on natural convection in a porous cavity. Eur J Mech B Fluid. 2017;62:86–93.

    Article  Google Scholar 

  14. Kefayati GHR. FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci. 2015;95:29–46.

    Article  CAS  Google Scholar 

  15. Kefayati GHR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.

    Article  Google Scholar 

  16. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82.

    Article  Google Scholar 

  17. Zeeshan A, Ijaz N, Abbas T, Ellahi R. The sustainable characteristic of Bio-bi-phase flow of peristaltic transport of MHD Jeffery fluid in human body. Sustainability. 2018;10(8):2671.

    Article  Google Scholar 

  18. Alamria SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383:276–81.

    Article  Google Scholar 

  19. Job VM, Gunakala SR. Unsteady hydromagnetic mixed convection nanofluid flows through an L-shaped channel with a porous inner layer and heat-generating components. Int J Heat Mass Transf. 2018;120:970–86.

    Article  CAS  Google Scholar 

  20. Alinejad J, Fallah K. Taguchi optimization approach for three-dimensional nanofluid natural convection in a transformable enclosure. J Thermophys Heat Transf. 2017;31(1):211–7.

    Article  CAS  Google Scholar 

  21. Sobhani M, Tighchi HA, Esfahani JA. Taguchi optimization of combined radiation/natural convection of participating medium in a cavity with a horizontal fin using LBM. Phys A. 2018;509:1062–79.

    Article  CAS  Google Scholar 

  22. Mamourian M, Shirvan KM, Ellahi R, Rahimi AB. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int J Heat Mass Transf. 2016;102:544–54.

    Article  CAS  Google Scholar 

  23. Shirvan KM, Mamourian M, Ellahi R. Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port. Int J Numer Methods Heat Fluid Flow. 2017;27(9):2053–69.

    Article  Google Scholar 

  24. Alinejad J, Esfahani JA. Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity. Meccanica. 2017;52(4–5):925–38.

    Article  Google Scholar 

  25. Kefayati GHR, Tang H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int J Hydrogen Energy. 2017;42(27):17284–327.

    Article  CAS  Google Scholar 

  26. Kefayati GHR. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;112:709–44.

    Article  CAS  Google Scholar 

  27. Mehryan SAM, Ghalambaz G, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2019;135(2):1047–67.

    Article  CAS  Google Scholar 

  28. Zahmatkesh I, Habibi MR. Natural and mixed convection of nanofluid in porous cavities: critical analysis using the Buongiorno’s model. J Theor Appl Mech. 2019;57(1):221–33.

    Article  Google Scholar 

  29. Maxwell JC. A treatise on electricity and magnetism. Cambridge: Oxford University Press; 1904.

    Google Scholar 

  30. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–81.

    Article  CAS  Google Scholar 

  31. Zahmatkesh I. On the suitability of the volume-averaging approximation for the description of thermal expansion coefficient of nanofluids. P I Mech Eng C J Mech Eng Sci. 2015;229(15):2835–41.

    Article  CAS  Google Scholar 

  32. Zahmatkesh I, Naghedifar SA. Oscillatory mixed convection in jet impingement cooling of a horizontal surface immersed in a nanofluid-saturated porous medium. Numer Heat Transf A. 2017;72(5):401–16.

    Article  CAS  Google Scholar 

  33. Zahmatkesh I, Naghedifar SA. Pulsating nanofluid jet impingement onto a partially heated surface immersed in a porous layer. Jordan J Mech Ind Eng. 2018;12(2):99–107.

    Google Scholar 

  34. Mahmud S, Fraser RA. Magnetohydrodynamic free convection and entropy generation in a square porous cavity. Int J Heat Mass Transf. 2004;47:3245–56.

    Article  Google Scholar 

  35. Das S, Banu AS, Jana RN, Makinde OD. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating. Alex Eng J. 2015;54(3):325–37.

    Article  Google Scholar 

  36. Kolsi L, Alrashed AAAA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    Article  CAS  Google Scholar 

  37. Sheikholeslami M. CuO–water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  38. Ghaffarpasand O. Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4–water nanofluid in the presence of Joule heating. Appl Math Model. 2016;40:9165–82.

    Article  Google Scholar 

  39. Reddy JVR, Sugunamma V, Sandeep N, Sulochana C. Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium. J Niger Math Soc. 2016;35(1):48–65.

    Article  Google Scholar 

  40. Fakour M, Ganji DD, Abbasi M. Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls. Case Stud Therm Eng. 2014;4:202–14.

    Article  Google Scholar 

  41. Javed T, Mehmood Z, Abbas Z. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Phys B. 2016;506:122–32.

    Article  Google Scholar 

  42. Mohd Zin NA, Khanb I, Shafie S. The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J Mol Liq. 2016;222:138–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Zahmatkesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahmatkesh, I., Shandiz, M.R.H. Optimum constituents for MHD heat transfer of nanofluids within porous cavities. J Therm Anal Calorim 138, 1669–1681 (2019). https://doi.org/10.1007/s10973-019-08191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08191-y

Keywords

Navigation