Skip to main content
Log in

Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity

  • Published:
Meccanica Aims and scope Submit manuscript

An Erratum to this article was published on 13 June 2016

Abstract

This study discusses the application of Taguchi method in assessing maximum heat transfer rate for the turbulent mixed convection in an enclosure embedded with rotating isothermal cylinder. The simulations were planned based on Taguchi’s L16 orthogonal array with each trial performed under different conditions of position of the cylinder, Reynolds number (Re) and Rayleigh number (Ra). The thermal lattice Boltzmann based on D3Q19 methods without any turbulent submodels was purposed to simulate the flow and thermal fields. A relaxation time method with the stability constants is introduced to solve turbulent natural convection problems. Signal-to-noise ratios (S/N) analysis were carried out in order to determine the effects of process parameters and optimal factor settings. Finally, confirmation tests verified that Taguchi method achieved optimization of heat transfer rate with sufficient accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

g:

Gravitational acceleration (m s−2)

T :

Temperature (K)

u, v :

Velocities (m s−1)

x, y :

Coordinates (m)

Nu l :

Local Nusselt number

Nu m :

Mean Nusselt number

Pr :

Prandtl number (ν/α)

Ra :

Rayleigh number (gβTH 3/αν)

Re :

Reynolds number ()H/(ν)

Ri :

Richardson number Ra/PrRe 2

α :

Thermal diffusivity (m2 s−1)

µ :

Dynamic viscosity [kg (m s)−1]

θ:

Dimensionless temperature

c :

Cold

f :

Fluid

h :

Hot

s :

Solid

References

  1. Samadiani E, Joshi Y, Mistree F (2008) The thermal design of a next generation data center: a conceptual exposition. J Electron Packag 130(4):1104–1112. doi:10.1115/1.2993151

    Article  Google Scholar 

  2. Kim YK, Lee KH, Kim HR (2008) Cold neutron source at KAERI Korea. Nucl Eng Des 238:1664–1669. doi:10.1016/j.nucengdes.2007.10.022

    Article  Google Scholar 

  3. Karthikeyan S, Sundararajan T, Shet USP, Selvaraj P (2009) Effect of turbulent natural convection on sodium pool combustion in the steam generator building of a fast breeder reactor. Nucl Eng Des 239(12):2992–3002. doi:10.1016/j.nucengdes.2009.09.025

    Article  Google Scholar 

  4. Rodriguez I, Castro J, Perez-Segarra CD, Oliva A (2009) Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. Int J Therm Sci 48(4):708–721. doi:10.1016/j.ijthermalsci.2008.06.002

    Article  Google Scholar 

  5. Lin W, Armfield SW (1999) Direct simulation of natural convection cooling in a vertical circular cylinder. Int J Thermophys Heat Transf 42:4117–4130. doi:10.1016/S0017-9310(99)00074-5

    Article  MATH  Google Scholar 

  6. Kurian V, Varma MN, Kannan A (2009) Numerical studies on laminar natural convection inside inclined cylinders of unity aspect ratio. Int J Thermophys Heat Transf 52:822–838. doi:10.1016/j.ijheatmasstransfer.2008.06.041

    Article  MATH  Google Scholar 

  7. Cherkasov SG (1994) Natural convection and temperature stratification in a cryogenic fuel tank in microgravity. Fluid Dyn 29(5):710–716. doi:10.1007/BF02030500

    Article  ADS  Google Scholar 

  8. Polezhaev VI, Cherkasov SG (1983) Unsteady thermal convection in a cylindrical vessel heated from the side. Fluid Dyn 18:620–629. doi:10.1134/S0869864311030097

    Article  ADS  MATH  Google Scholar 

  9. Cherkasov SG (1984) Natural convection in a vertical cylindrical vessel with heat supplied to its side and free surfaces. Fluid Dyn 19(6):902–906. doi:10.1007/BF01411577

    Article  ADS  Google Scholar 

  10. Moiseeva LA, Cherkasov SG (1996) Mathematical modeling of natural convection in a vertical cylindrical tank with alternating-sign heat flux distribution on the wall. Fluid Dyn 31(2):218–223. doi:10.1007/BF02029680

    Article  ADS  MATH  Google Scholar 

  11. Sheremet MA (2011) Unsteady conjugate thermogravitational convection in a cylindrical region with local energy source. Thermophys Aeromech 18:447–458. doi:10.1134/S0869864311030097

    Article  ADS  Google Scholar 

  12. Chatterjee D, Chakraborty S (2006) Entropy generation analysis of turbulent transport in laser surface alloying process. Mater Sci Technol 22:627–633. doi:10.1179/174328406X83978

    Article  Google Scholar 

  13. Esfahani JA, Alinejad J (2013) Entropy generation of conjugate natural convection in enclosures: the Lattice Boltzmann Method. J Thermophys Heat Transf 27(3):498–505. doi:10.2514/1.T4128

    Article  Google Scholar 

  14. Naterer G (2008) Transition criteria for entropy reduction of convective heat transfer from micropatterned surfaces. J Thermophys Heat Transf 22(2):271–280. doi:10.2514/1.33292

    Article  Google Scholar 

  15. Alquaity ABS, Al-Dini SA, Yilbas BS (2012) Entropy generation in microchannel flow with presence of nanosized phase change particles. J Thermophys Heat Transf 26:134–140. doi:10.2514/1.57290

    Article  Google Scholar 

  16. Esfahani JA, Alinejad J (2013) Lattice Boltzmann simulation of viscous-fluid flow and conjugate heat transfer in a rectangular cavity with a heated moving wall. Thermophys Aeromech 20(5):613–620. doi:10.1134/S0869864313050084

    Article  Google Scholar 

  17. D’Orazio A, Corcione M, Celata GP (2004) Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci 43:575–586. doi:10.1016/j.ijthermalsci.2003.11.002

    Article  Google Scholar 

  18. Shu C, Peng Y, Chew YT (2002) Simulation of natural convection in a square cavity by Taylor series expansion and least squares-based Lattice Boltzmann Method. Int J Mod Phys 13:1399–1414. doi:10.1142/S0129183102003966

    Article  ADS  MATH  Google Scholar 

  19. Karimipour A, Nezhad AH, D’Orazio A, Shirani E (2013) The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using Lattice Boltzmann Method. J Theor Appl Mech 51(2):447–462

    Google Scholar 

  20. D’Orazio A, Karimipour A, Nezhad AH, Shirani E (2015) Lattice Boltzmann Method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50:945–962

    Article  MathSciNet  Google Scholar 

  21. Chopard B, Luthi PO (1999) Lattice Boltzmann computations and applications to physics. Theor Comput Phys 217:115–130. doi:10.1016/S0304-3975(98)00153-4

    MathSciNet  MATH  Google Scholar 

  22. Nourgaliev RR, Dinh TN, Theofanous TG, Joseph D (2003) The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int J Multiph Flow 29(1):117–169. doi:10.1016/S0301-9322(02)00108-8

    Article  MATH  Google Scholar 

  23. Yu D, Mei R, Luo LS, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367. doi:10.1016/S0376-0421(03)0003-4

    Article  Google Scholar 

  24. Mohammad AA (2007) Applied Lattice Boltzmann Method for transport phenomena momentum heat mass transfer. University of Calgary Press, Calgary

    Google Scholar 

  25. Aghajani DM, Farhadi M, Sedighi K (2009) Effect of heater location on heat transfer and entropy generation in the cavity using the Lattice Boltzmann Method. Heat Transf Res 40:521–536. doi:10.1615/HeatTransRes.v40.i6.20

    Article  Google Scholar 

  26. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Mezrhab A, Jami M, Abid C, Bouzidi M, Lallemand P (2006) Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attached to its cold wall. Int J Heat Fluid Flow 27:456–465. doi:10.1016/j.ijheatfluidflow.2005.11.002

    Article  Google Scholar 

  28. He X, Chen S, Doolen GD (1998) A novel thermal model for the Lattice Boltzmann Method in incompressible limit. J Comput Phys 146:282–300

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. He X, Luo LS (1997) Lattice Boltzmann model for the incompressible Navier–Stokes equations. J Stat Phys 88(3–4):927–944. doi:10.1023/B:JOSS.0000015179.12689.e4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kao P-H, Yang R-J (2007) Simulating oscillatory flows in Rayleigh–Benard convection using the Lattice Boltzmann Method. Int J Heat Mass Transf 50:3315–3328. doi:10.1016/j.ijheatmasstransfer.2007.01.035

    Article  MATH  Google Scholar 

  31. Wang J, Wang D, Lallemandb P, Luoc L-S (2013) Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput Math Appl 65:262–286. doi:10.1016/j.camwa.2012.07.001

    Article  MathSciNet  Google Scholar 

  32. Guo ZL, Zheng Ch, Shi BC (2010) An extrapolation method for boundary conditions in Lattice Boltzmann Method. Phys Fluids 14(6):2007–2010. doi:10.1063/1.1471914

    Article  ADS  MATH  Google Scholar 

  33. Du R, Liu W (2013) A new multiple-relaxation-time Lattice Boltzmann Method for natural convection. J Sci Comput 56:122–130. doi:10.1007/s10915-012-9665-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Dixit H, Babu V (2006) Simulation of high Rayleigh number natural convection in a square cavity using the Lattice Boltzmann Method. Int J Heat Mass Transf 49:727–739. doi:10.1016/j.ijheatmasstransfer.2005.07.046

    Article  MATH  Google Scholar 

  35. Barakos G, Mitsoulis E (1994) Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int J Numer Methods Fluids 18:695–719. doi:10.1002/fld.1650180705

  36. Peng Y, Shu C, Chew YT (2003) A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. J Comput Phys 193:260–274. doi:10.1016/j.jcp.2003.08.008

    Article  ADS  MATH  Google Scholar 

  37. Bocu Z, Altac Z (2011) Laminar natural convection heat transfer and air flow in three-dimensional rectangular enclosures with pin arrays attached to hot wall. Appl Therm Eng 31:3189–3195. doi:10.1016/j.applthermaleng.2011.05.045

    Article  Google Scholar 

  38. Arpino F, Massarotti N, Mauro A (2010) High Rayleigh number laminar-free convection in cavities: new benchmark solutions. Numer Heat Transf Part B 58:73–97

    Article  ADS  Google Scholar 

  39. Taguchi G (1981) On-line quality control during production. Japan Standard Association, Tokyo

    Google Scholar 

  40. Taguchi G, Elsayed EA, Hsiang T (1989) Quality engineering in production systems. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alinejad.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11012-016-0460-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinejad, J., Esfahani, J.A. Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity. Meccanica 52, 925–938 (2017). https://doi.org/10.1007/s11012-016-0436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0436-9

Keywords

Navigation