Skip to main content
Log in

Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the effect of ball milling of synthesized LiFe5O8 ferrite powders on the microstructure and properties of ferrite ceramics was studied by XRD, laser diffraction and SEM analysis as well as thermal analysis. The mechanical milling of LiFe5O8 was carried out in a Fritsch Pulverisette 7 planetary mill using the zirconia or steel grinding balls. The process of ferrite sintering was investigated using dilatometric analysis. In addition, ferrite ceramics electromagnetic properties, including magnetization, Curie point and electrical resistivity, were investigated. The results showed a strong difference in the structure of ferrite ceramics obtained from ferrite powders pre-milled by zirconia or steel grinding balls. Thus, the milling results in a decrease in the particle size of the ferrite powders to ultrafine range. The ferrite ceramics, obtained from powder milled by steel balls, is characterized by high density and low porosity as well as good electromagnetic properties and the main presence of a disordered β-LiFe5O8 phase. However, the mechanical milling using zirconia balls leads to the contamination of ferrite by zirconia, resulting in the formation of β-LiFe5O8/ZrO2 composite ceramics during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dipti Kumar Parveen, Juneja JK, Singh S, Raina KK, Prakash C. Improved dielectric and magnetic properties in modified lithium–ferrites. Ceram Int. 2015;41:3293–7.

    Article  CAS  Google Scholar 

  2. Verma V, Gairola SP, Pandey V, Tawale JS, Su H, Kotanala RK. High permeability and low power loss of Ti and Zn substitution lithium ferrite in high frequency range. Magn Magn Mater. 2009;321:3808–12.

    Article  CAS  Google Scholar 

  3. Surzhikov AP, Malyshev AV, Lysenko EN, Vlasov VA, Sokolovskiy AN. Structural, electromagnetic, and dielectric properties of lithium-zinc ferrite ceramics sintered by pulsed electron beam heating. Ceram Int. 2017;43:9778–82.

    Article  CAS  Google Scholar 

  4. Dippong T, Levei EA, Cadar O, Goga F, Barbu-Tudoran L, Borodi G. Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J Anal Appl Pyrol. 2017;128:121–30.

    Article  CAS  Google Scholar 

  5. Dippong T, Cadar O, Levei EA, Leostean C, Tudoran LB. Effect of annealing on the structure and magnetic properties of CoFe2O4:SiO2 nanocomposites. Ceram Int. 2017;43:9145–52.

    Article  CAS  Google Scholar 

  6. Dippong T, Cadar O, Levei EA, Bibicu I, Diamandescu L, Leostean C, Lazar M, Borodi G, Tudoran LB. Structure and magnetic properties of CoFe2O4/SiO2 nanocomposites obtained by sol-gel and post annealing pathways. Ceram Int. 2017;43:2113–22.

    Article  CAS  Google Scholar 

  7. An SY, Shim I-B, Kim CS. Synthesis and magnetic properties of LiFe5O8 powders by a sol–gel process. Magn Magn Mater. 2004;290–291:1551–4.

    Google Scholar 

  8. Tabuchi M, Ado K, Sakaebe H, Masquelier C, Kageyama H, Nakamura O. Preparation of AFeO2 (A = Li, Na) by hydrothermal method. Solid State Ion. 1995;79:220.

    Article  CAS  Google Scholar 

  9. Wang S, Gao L, Li L, Zheng H, Zhang Z, Yu W, Qian Y. Low temperature synthesis of metastable lithium ferrite: magnetic and electrochemical properties. Nanotechnology. 2005;16:2677.

    Article  CAS  Google Scholar 

  10. Rezlescu N, Doroftei C, Rezlescu E, Popa PD. Lithium ferrite for gas sensing applications. J Sens Actuators. 2008;133:420.

    Article  CAS  Google Scholar 

  11. Verma S, Karande J, Patidar A, Joy PA. Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Mater Lett. 2005;59:2630–3.

    Article  CAS  Google Scholar 

  12. Matsui T, Wagner JB. Electrical properties of LiFe5O8. J Electrochem Soc. 1977;124:1141–3.

    Article  CAS  Google Scholar 

  13. Cook W, Manley M. Raman characterization of α- and β-LiFe5O8 prepared through a solid–state reaction pathway. J Solid State Chem. 2010;183:322–6.

    Article  CAS  Google Scholar 

  14. Surzhikov AP, Lysenko EN, Malyshev AV, Nikolaev EV, Zhuravkov SP, Vlasov VA. Investigation of the composition and electromagnetic properties of lithium ferrite LiFe5O8 ceramics synthesized from ultradisperse iron oxide. Russ Phys J. 2015;57:1342–7.

    Article  CAS  Google Scholar 

  15. Rezlescu N, Popa PD, Rezlescu E. Nanoparticles of high-frequency ferrites obtained by self-combustion method. Magn Magn Mater. 2004;272–276:e1811–2.

    Article  CAS  Google Scholar 

  16. Ahniyaz A, Fujiwara T, Song S-W, Yoshimura M. Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. J. Solid State Ion. 2002;151:419–23.

    Article  CAS  Google Scholar 

  17. Sankaranarayanan VK, Pankhurst QA, Dickson DPE, Johnson CE. Synthesis and characterization of ultrafine lithium ferrite from a citrate precursor. Magn Magn Mater. 1994;130:288–92.

    Article  CAS  Google Scholar 

  18. Dippong T, Levei EA, Cadar O, Goga F, Borodi G, Barbu-Tudoran L. Thermal behavior of CoxFe3-xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim. 2017;128:39–52.

    Article  CAS  Google Scholar 

  19. Dippong T, Levei EA, Cadar O, Mesaros A, Borodi G. Sol-gel synthesis of CoFe2O4:SiO2 nanocomposites—insights into the thermal decomposition process of precursors. J Anal Appl Pyrol. 2017;125:169–77.

    Article  CAS  Google Scholar 

  20. Giri AK. Nanocrystalline materials prepared through crystallization by ball milling. Adv Mater. 1997;9:163–6.

    Article  CAS  Google Scholar 

  21. Widatallah HM, Johnson C, Berry FJ. The influence of ball milling and subcequent calcination on the formation of LiFeO2. J Mater Sci. 2002;37:4621–5.

    Article  CAS  Google Scholar 

  22. Zdujić M, Jovalekić C, Karanović LJ, Mitrić M. The ball milling induced transformation of α-Fe2O3 powder in air and oxygen atmosphere. Mater Sci Eng, A. 1999;262:204–13.

    Article  Google Scholar 

  23. Berbenni V, Bruni G, Milanese C, Girella A, Marini A. Synthesis and characterization of LaFeO3 powders prepared by a mixed mechanical/thermal processing route. J Therm Anal Calorim. 2018;133:413–9.

    Article  CAS  Google Scholar 

  24. Parlak TT, Apaydin F, Yildiz K. Formation of SrTiO3 in mechanically activated SrCO3-TiO2 system. J Therm Anal Calorim. 2017;127:63–9.

    Article  CAS  Google Scholar 

  25. Boldyrev VV. Mechanochemistry and mechanical activation of solids. Russ Chem Rev. 2006;75:177–89.

    Article  CAS  Google Scholar 

  26. Kavanlooee M, Hashemi B, Maleki-Ghaleh H, Kavanlooee J. Effect of annealing on phase evolution, microstructure, and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite. J Electron Mater. 2012;41:3082–6.

    Article  Google Scholar 

  27. Widatallah HM, Ren XL, Al-Omari IA. The influence of TiO2 polymorph, mechanical milling and subsequent sintering on the formation of Ti-substituted spinel-related Li0.5Fe2.5O4. J Mater Sci. 2006;41:6333–8.

    Article  CAS  Google Scholar 

  28. Gee SH, Hong YK, Park MH, Erickson DW, Lamb PJ. Synthesis of nanosized (Li0.5xFe0.5xZn1-x)Fe2O4 particles and magnetic properties. J Appl Phys. 2002;91:7586–8.

    Article  CAS  Google Scholar 

  29. Berbenni V, Marini A, Matteazzi P, Ricceri R, Welham N. Solid-state formation of lithium ferrites from mechanically activated Li2CO3-Fe2O3 mixtures. J Eur Ceram Soc. 2003;23:527–36.

    Article  CAS  Google Scholar 

  30. Lysenko EN, Surzhikov AP, Vlasov VA, Malyshev AV, Nikolaev EV. Thermal analysis study of solid-phase synthesis of zinc- and titanium-substituted lithium ferrites from mechanically activated reagents. J Therm Anal Calorim. 2015;122:1347–53.

    Article  CAS  Google Scholar 

  31. Lysenko E, Nikolaev E, Vlasov V, Surzhikov A. Microstructure and reactivity of Fe2O3-Li2CO3-ZnO ferrite system ball-milled in a planetary mill. Thermochim Acta. 2018;664:100–7.

    Article  CAS  Google Scholar 

  32. Gallagher PK. Thermomagnetometry. J Therm Anal Calorim. 1997;49:33–44.

    Article  CAS  Google Scholar 

  33. Wang T, Wang H, Wang F, Li J, Zhang Q, Huang X. Certification of reference materials of Alumel, nickel and iron for Curie point. J Therm Anal Calorim. 2018;131:1979–85.

    Article  CAS  Google Scholar 

  34. Opuchovic O, Niznansky D, Kareiva A. Thermoanalytical (TG/DSC/EVG-GC-MS) characterization of the lanthanide (Ho) iron garnet formation in sol-gel. J Therm Anal Calorim. 2017;130:1085–94.

    Article  CAS  Google Scholar 

  35. Surzhikov AP, Frangulyan TS, Ghyngazov SA, Lysenko EN. Investigation of structural states and oxidation processes in Li0.5Fe2.5O4-δ using TG analysis. J Therm Anal Calorim. 2012;108:1207–12.

    Article  CAS  Google Scholar 

  36. Berbenni V, Marini A, Capsoni D. Solid state reaction study of the system Li2CO3/Fe2O3. Zeitschrift fur naturforschung - section A. J Phys Sci. 1998;53:997–1003.

    CAS  Google Scholar 

  37. Argentina GM, Baba PD. Microwave lithium ferrites: an overview. IEEE Trans Microwave Theory Tech MTT. 1974;22:652–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education and Science of the Russian Federation in part of the Science program (Project 11.980.2017/4.6). The experiments on equipments and participation in scientific conference were funded from Tomsk Polytechnic University Competitiveness Enhancement Program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malyshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, E.N., Malyshev, A.V., Vlasov, V.A. et al. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J Therm Anal Calorim 134, 127–133 (2018). https://doi.org/10.1007/s10973-018-7549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7549-4

Keywords

Navigation