Skip to main content
Log in

Effect of antimony on glass transition and thermal stability of Se78−xTe18Sn2Sbx (x = 0, 2, 4 and 6 at.%) multicomponent glassy alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Multicomponent glassy alloys Se78−xTe18Sn2Sbx (x = 0, 2, 4 and 6) have been synthesized using melt quench technique. The prepared samples have been characterized by X-ray diffraction technique and differential scanning calorimetry (DSC). Glass transition kinetics of Se78−xTe18Sn2Sbx (x = 0, 2, 4 and 6 at.%) glassy alloys has been examined using DSC. DSC runs have been recorded at different heating rates (5, 10, 15 and 20 K min−1) for each sample under investigation. Heating rate dependence of glass transition temperature (Tg) has been studied using Lasocka empirical relation. The activation energy of glass transition has been evaluated using Kissinger and Moynihan’s relation. The effect of antimony concentration on glass transition temperature and activation energy has been investigated in the prepared samples. Glass-forming ability and thermal stability of Se78−xTe18Sn2Sbx (x = 0, 2, 4 and 6) glassy alloys have been monitored through the evaluation of thermal stability using Dietzal relation, Hurby parameter, and Saad and Poulin parameter. The above-mentioned parameters are found to be compositionally dependent, which indicates that among the studied glass samples the stability is maximum for Sb at 2% content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammar AH, Faridb AM, Farag AAM. Non-isothermal kinetic analysis of crystallization of vacuum prepared Se90In9.9Cu0.1 alloy thin films. J Non-Cryst Solids. 2016;434:85–91.

    Article  CAS  Google Scholar 

  2. Madan A, Shaw MP. The physics and applications of amorphous semiconductors. New York: Academic Press; 1988.

    Google Scholar 

  3. Singh AK. A short over view on advantage of chalcogenide glassy alloys. J Non-Oxide Glasses. 2012;3(1):1–4.

    CAS  Google Scholar 

  4. Stronski A, Paiuk O, Gudymenko A, Kladko V, Oleksenko P, Vuichyk N, Vlček M, Lishchynskyy I, Lahderanta E, Lashkul A, Gubanova A, Kryskov T. Effect of doping by transitional elements on properties of chalcogenide glasses. Ceram Int. 2015;41:7543–8.

    Article  CAS  Google Scholar 

  5. Tanaka K, Shimakawa K. Amorphous chalcogenide semiconductors and related materials. New York: Springer; 2011.

    Book  Google Scholar 

  6. Mouawad O, Vitry P, Strutynski C, Picot-Clémente J, Désévédavy F, Gadret G, Jules JC, Lesniewska E, Smektala F. Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile. Opt Mater. 2015;44:25–32.

    Article  CAS  Google Scholar 

  7. Srivastava A, Tiwari SN, Upadhaya AN, Zulfequar M, Khan SA. First-order phase transformation and structural studies in Se85In15−xZnx chalcogenide glasses. J Therm Anal Calorim. 2017;129:1435–44.

    Article  CAS  Google Scholar 

  8. Mohamed M, Abd-el Salam MN, Abdel-Rahim MA, Abdel-Latief AY, Shaaban ER. Effect of Ag addition on crystallization kinetics and thermal stability of As–Se chalcogenide glasses. J Therm Anal Calorim. 2018;132:91–101.

    Article  CAS  Google Scholar 

  9. Lafi OA, Imran MMA. Microscopic origin of demixing in Ge20SexTe80−x alloys. J Alloys Compd. 2011;509:5090–4.

    Article  CAS  Google Scholar 

  10. Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011;106:845–52.

    Article  CAS  Google Scholar 

  11. Terao M, Morikawa T, Ohta T. Electrical phase-change memory: fundamentals and State of the Art. Jpn J Appl Phys. 2009;48:080001–14.

    Article  Google Scholar 

  12. Lafi OA. Correlation of some opto-electrical properties of Se–Te–Sn glassy semiconductors with the average single bond energy and the average elctronegativity. J Alloys Compd. 2016;660:503–8.

    Article  CAS  Google Scholar 

  13. Heera P, Kumar A, Sharma R. Physical and dielectric properties of Sn doped Se–Te glassy system. J Ovonic Res. 2012;8(2):29–40.

    CAS  Google Scholar 

  14. Kumar H, Mehta N, Singh K. Calorimetric studies of glass transition phenomenon in glassy Se80−xTe20Snx alloys. Phys Scr. 2009;80:065602.

    Article  Google Scholar 

  15. Kumar H, Mehta N. Kinetic parameters of glass transition and crystallization for glassy Se and glassy Se98M2 (M = In, Sb and Sn) alloys. Mater Chem Phys. 2012;134:834–8.

    Article  CAS  Google Scholar 

  16. Lafi OA. ImranMMA, AbdullahMK, Al-SakhelSA, Thermal characterization of Se100 − xSnx(x = 4, 6 and 8) chalcogenide glasses using differential scanning calorimeter. Thermochim Acta. 2013;560:71–5.

    Article  CAS  Google Scholar 

  17. Srivastava A, Mehta N. Investigation of some thermo-mechanical and dielectric properties in multi-component chalcogenide glasses of Se–Te–Sn–Ag quaternary system. J Alloys Compd. 2016;658:533–42.

    Article  CAS  Google Scholar 

  18. Kumar H, Mehta N. Thermal characterization of Se78−xTe20Sn2Pbx (0 ≤ x ≤ 6) glassies for phase change optical recording technique. Glass Phys Chem. 2013;39:490–8.

    Article  CAS  Google Scholar 

  19. Kumar H, Mehta N. Kinematical Studies of Thermal Crystallization in Glassy Se78−xTe20Sn2Bix (0 ≤ x ≤ 6) Alloys. J Adv Phys. 2013;2:163–9.

    Article  CAS  Google Scholar 

  20. Saraswat S, Sharma SD. Investigation of silver as chemical modifier for tailoring of some physico-chemical properties in inorganic glassy Se80Te20 alloy. Glass Phys Chem. 2015;41(4):402–9.

    Article  CAS  Google Scholar 

  21. Rao V, Dwivedi DK. Glass transition kinetics and thermal stability of Se82−xTe18Sbx (x = 0, 4, 8 and 12 at.%) glassy alloys. J Mater Sci Mater Electron. 2017;28(8):6208–16.

    Article  CAS  Google Scholar 

  22. Rao V, Dwivedi DK. Crystallization kinetics of Se82−xTe18Sbx (x = 0, 4, 8, 12) glassy alloys by iso-conversional approach. Mater Res Innov. 2017. https://doi.org/10.1080/14328917.2017.1401389.

    Article  Google Scholar 

  23. Dimitrov D, Tzocheva D, Kovacheva D. Calorimetric study of amorphous Sb–Se thin films. Thin Solid Films. 1998;323:79–84.

    Article  CAS  Google Scholar 

  24. Thornburg DD. Substrate effects on the crystallization kinetics of amorphous selenium thin films. Thin Solid Films. 1979;37:215–9.

    Article  Google Scholar 

  25. Rabinal MK, Sangunni KS, Gopal ESR. Chemical ordering in Ge20Se80−xInx glasses. J Non-Cryst Solids. 1995;188:98–106.

    Article  CAS  Google Scholar 

  26. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  27. Yin H, Li L, Liu Y, Hu L, Zeng H, Chen G. Impact of tellurium on glass transition and crystallization in the Ge–Se–Te–Bi system. Ceram Inter. 2016. https://doi.org/10.1016/j.ceramint.2016.11.167.

    Article  Google Scholar 

  28. Imran MMA, Bhandari D, Saxena NS. Kinetic studies of bulk Ge22Se78−xBix (x = 0, 4 and 8) semiconducting glasses. J Therm Anal Calorim. 2001;65:257–74.

    Article  CAS  Google Scholar 

  29. Moynihan CT, Easteal AJ, Wilder J, Tucke J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  31. Fayek SA. Study of non-isothermal kinetics, electrical and optical properties of (GaSeTe) films. Vacuum. 2004;72:11–20.

    Article  Google Scholar 

  32. Pascual MI, Lara C, Duran A. Non-isothermal crystallization kinetics of devitrifying RO–BaO–SiO2 (R=Mg, Zn) glasses. Phys Chem Glasses Eur J Glass Sci Technol B. 2006;47:572–81.

    CAS  Google Scholar 

  33. Mehta N, Singh K, Kumar A. On the glass transition phenomenon in Se–Te and Se–Ge based ternary chalcogenide glasses. Phys B. 2009;404:1835–9.

    Article  CAS  Google Scholar 

  34. Mehta N, Kumar A. Applicability of Kissinger’s relation in the determination of activation energy of glass transition process. J Optoelectron Adv Mater. 2009;7(3):1473–8.

    Google Scholar 

  35. Moynihan CT, Cantor S. Viscosity and its temperature dependence in molten BeF2. J Chem Phys. 1968;48:115–21.

    Article  CAS  Google Scholar 

  36. Angell CA. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J Non-Cryst Solids. 1988;102(1–3):205–21.

    Article  CAS  Google Scholar 

  37. Bohmer R, Ngai KL, Angell CA, Plazek DJ. Non-exponential relaxations in strong and fragile glass formers. J Chem Phys. 1993;99:4201–9.

    Article  Google Scholar 

  38. Sharma A, Mehta N. Observation of switching behavior in some multi-component glasses of Se–Te–Sn–Pb system. Mater Lett. 2016;178:178–80.

    Article  CAS  Google Scholar 

  39. Zanotto ED. Isothermal and adiabatic nucleation in glass. J Non-Cryst Solids. 1987;89:10–6.

    Article  Google Scholar 

  40. Zanotto ED. Experimental tests of the classical nucleation theory for glasses. J Non-Cryst Solids. 1985;74:373–94.

    Article  CAS  Google Scholar 

  41. Nascimento MLF, Souza LA, Ferreira EB, Zanotto ED. Can glass stability parameters infer glass forming ability? J Non-Cryst Solids. 2005;351:3296–308.

    Article  CAS  Google Scholar 

  42. Turnbll D. Under what conditions can a glass be formed? Contemp Phys. 1969;10:473–88.

    Article  Google Scholar 

  43. Dietzel A. Glass structure and glass properties. Glasstech Ber. 1968;22:41.

    Google Scholar 

  44. Hruby A. Evaluation of glass-forming tendency by means of DTA C. Zech J Phys B. 1972;22:1187–93.

    CAS  Google Scholar 

  45. Hruby A. Glass-forming tendency in the GeSx system. Czech J Phys B. 1973;23:1263–72.

    Article  CAS  Google Scholar 

  46. Rahim MAA, Hafiz MM, Mahmoud AZ. Crystallization kinetics and thermal stability inSe85−xTe15Sbx chalcogenide glasses. Phase Transit. 2016. https://doi.org/10.1080/01411594.2015.1136912.

    Article  Google Scholar 

  47. Saad M, Pouling M. Glass forming ability criterion. Mater Sci Foum. 1987;19:11–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V., Chandel, N., Mehta, N. et al. Effect of antimony on glass transition and thermal stability of Se78−xTe18Sn2Sbx (x = 0, 2, 4 and 6 at.%) multicomponent glassy alloys. J Therm Anal Calorim 134, 915–922 (2018). https://doi.org/10.1007/s10973-018-7309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7309-5

Keywords

Navigation