Skip to main content
Log in

Crystallization study of Sn additive Se–Te chalcogenide alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Calorimetric study of Se85−x Te15Sn x (x = 0, 2, 4 and 6) glassy alloys have been performed using Differential Scanning Calorimetry (DSC) under non-isothermal conditions at four different heating rates (5, 10, 15 and 20 °C/min). The glass transition temperature and peak crystallization temperature are found to increase with increasing heating rate. It is remarkable to note that a second glass transition region is associated with second crystallization peak for Sn additive Se–Te investigated samples. Three approaches have been employed to study the glass transition region. The kinetic analysis for the first crystallization peak has been taken by three different methods. The glass transition activation energy, the activation energy of crystallization, and Avrami exponent (n) are found to be composition dependent. The crystallization ability is found to increase with increasing Sn content. From the experimental data, the temperature difference (T p − T g) is found to be maximum for Se83Te15Sn2 alloy, which indicates that this alloy is thermally more stable in the composition range under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan SA, Zulfequar M, Husain M. On the crystallization kinetics of amorphous Se80In20−x Pb x . Solid State Commun. 2002;123:463–8.

    Article  CAS  Google Scholar 

  2. Suri N, Bindra KS, Kumar P, Thangaraj R. Calorimetric studies of Se80−x Te20Bi x bulk samples. J Non-Cryst Solids. 2007;353:1264–7.

    Article  CAS  Google Scholar 

  3. Afify N, Hussein MA, El-Kabany N, Fathy N. Structural transformation on Se0.8Te0.2 chalcogenide glass. J Non-Cryst Solids. 2008;354:3260–6.

    Article  CAS  Google Scholar 

  4. Chiba R, Funakoshi N. Crystallization of vacuum deposited Te–Se–Cu alloy film. J Non-Cryst Solids. 1988;105:149–54.

    Article  CAS  Google Scholar 

  5. Saxena NS. Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses. J Non-Cryst Solids. 2004;345–346:161–8.

    Article  Google Scholar 

  6. Shaaban ER, Kansal I, Shapaan M, Ferreira JMF. Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim. 2009;98:347–54.

    Article  CAS  Google Scholar 

  7. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  8. Kumar H, Mehta N, Singh K. Calorimetric studies of glass transition phenomenon in glassy Se80−x Te20Sn x . Phys Scr. 2009;80:065602.

    Article  Google Scholar 

  9. Kaur G, Komatsu T, Thangaraj R. Crystallization kinetics of bulk amorphous Se–Te–Sn system. J Mater Sci. 2000;35:903–6.

    Article  CAS  Google Scholar 

  10. Maharjan NB, Singh K, Saxena NS. Calorimetric studies in Se75Te25−x Sn x chalcogenide glasses. Phys Status Solidi (a). 2003;195:305–10.

    Article  CAS  Google Scholar 

  11. Tripathi SK, Sharma V, Thakur A, Sharma J, Saini GSS, Goyal N. Effect of Sb additive on the electrical properties of Se–Te alloy. J Non-Cryst Solids. 2005;351:2468–73.

    Article  CAS  Google Scholar 

  12. Othman AA, Amer HH, Osman MA, Dahshan A. Non-isothermal crystallization kinetics study on new amorphous Ga20Sb5S75 and Ga20Sb40S40 chalcogenide glasses. J Non-Cryst Solids. 2005;351:130–5.

    Article  CAS  Google Scholar 

  13. Ziani N, Belhadji M, Heireche L, Bouchaour Z, Belbachir M. Crystallization kinetics of Ge20Te80 chalcogenide glasses doped with Sb. Physi B. 2005;358:132–7.

    Article  CAS  Google Scholar 

  14. Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd. 2009;476:348–51.

    Article  CAS  Google Scholar 

  15. Ahmad M, Kumar P, Suri N, Kumar J, Thangaraj R. Kinetics of nonisothermal crystallization in Sn10Sb20−x Bi x Se70 glassy semiconductors. Appl Phys A. 2009;94:933–7.

    Article  CAS  Google Scholar 

  16. Mehta N, Kumar A. A study of thermal crystallization on glassy Se80Te20 and Se80In20 using DSC technique. J Therm Anal Calorim. 2006;83:401–5.

    Article  CAS  Google Scholar 

  17. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  CAS  Google Scholar 

  20. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  21. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

  22. Addel-Rahim MA, Hafiz MM, Shamekh AM. A study of crystallization kinetics of some Ge–Se–In glasses. Physica B. 2005;369:143–54.

    Article  Google Scholar 

  23. Lafi OA, Imran MMA, Abdullah MK. Glass transition activation energy, glass-forming ability and thermal stability of Se90In10−x Sn x (x = 2, 4, 6 and 8) chalcogenide glasses. Physica B. 2007;395:69–75.

    Article  CAS  Google Scholar 

  24. Lucovsky G. Specification of medium range order in amorphous materials. J Non-Cryst Solids. 1987;97:155–8.

    Article  Google Scholar 

  25. Imran MMA, Saxena NS, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100−x In x (x = 2, 4 and 10) semi conducting glasses. Phys Status Solidi (a). 2000;181:357–68.

    Article  CAS  Google Scholar 

  26. Eisenberg A. Glass transition temperatures in amorphous selenium. Polym Lett. 1963;1:177–9.

    Article  Google Scholar 

  27. Lasocka M. The effect of scanning rate on glass transition temperature of splat cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  28. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  29. Pratap A, Raval KG, Gupta A, Kulkarni SK. Nucleation and growth of a multicomponent metallic glass. Bull Mater Sci. 2000;23:185–8.

    Article  CAS  Google Scholar 

  30. Jain R, Bhandari D, Saxena NS, Sharma SK, Tripathi A. Effect of high-energy heavy ion irradiation on the crystallization kinetics of Co-based metallic glasses. Bull Mater Sci. 2001;24:27–33.

    Article  CAS  Google Scholar 

  31. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  32. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by UGC (Major Research Project), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patial, B.S., Thakur, N. & Tripathi, S.K. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim 106, 845–852 (2011). https://doi.org/10.1007/s10973-011-1579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1579-5

Keywords

Navigation