Skip to main content
Log in

A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flow field design has an important role in proton exchange membrane fuel cell (PEMFC) due to its effect on the distribution of pressure, current density, temperature, heat and water management and PEMFC performance. In this paper, the sinusoidal flow field is examined and compared with straight-parallel configuration using a finite volume method based on non-isothermal, steady-state and multiphase model. A set of continuity, momentum, energy, species and electrochemical equations is solved by CFD commercial code with SIMPLE algorithm as a solution approach. The obtained results reveal that at an operating voltage, the maximum velocity and pressure drop for sinusoidal flow field are 1.18 and 6 times more than straight-parallel flow field at GDL/CL interface. Also, it is found that the current density and maximum power density for sinusoidal flow field are 0.65 and 0.32 w cm−2, respectively. Ultimately, the results indicated that the sinusoidal flow field has better performance in compared with straight-parallel flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Superficial electrode area (m2)

C k :

Molar concentration of the kth species (mol m−3)

C P :

Specific heat at constant pressure (J kg−1 K−1)

df :

Diameter of pore (m)

\(D_{\text{k}}^{\text{eff}}\) :

Effective diffusion coefficient of the kth component (m2 s−1)

F:

Faraday constant (96,487, C mol−1)

i 0 :

Exchange current density (A m−2)

j :

Current density (A m−2)

k :

Thermal conductivity (W m−1 K−1)

M :

Molecular mass (kg mol−1)

p :

Pressure (Pa)

R :

Universal gas constant (8.314 J mol−1 K−1)

S :

Source term

T :

Temperature (K)

\(\vec{u}\) :

Velocity vector (m s−1)

U :

Uniformity index

γ :

Concentration dependence

α :

Transfer coefficient for reaction

ɛ :

Porosity

φ :

Potential (V)

σ e :

Ionic conductivity of the membrane (S m−1)

\(\sigma_{\text{k}}^{\text{eff}}\) :

Effective ionic conductivity coefficient of the membrane (S m−1)

K :

Permeability (m2)

λ :

Relative humidity of the membrane

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

η :

Over potential (V)

ς :

Specific active surface area (m−1)

avg:

Average

a:

Anode

c:

Cathode

e:

Membrane

f:

Fluid

oc:

Open circuit

ref:

Reference

s:

Solid

References

  1. Toyota Global Site | FCV Fuel Cell Vehicle, (n.d.). http://www.toyota-global.com/innovation/environmental_technology/fuelcell_vehicle/ (Accessed September 12 2017).

  2. Peng L, Lai X, Liu D, Hu P, Ni J. Flow channel shape optimum design for hydro formed metal bipolar plate in PEM fuel cell. J Power Sour. 2008;178:223–30. https://doi.org/10.1016/j.jpowsour.2007.12.037.

    Article  CAS  Google Scholar 

  3. Cheng CH, Lin HH, Lai GJ. Design for geometric parameters of PEM fuel cell by integrating computational fluid dynamics code with optimization method. J Power Sour. 2007;165:803–13. https://doi.org/10.1016/j.jpowsour.2006.12.040.

    Article  CAS  Google Scholar 

  4. Su A, Ferng YM, Shih JC. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC. Energy. 2010;35:16–27. https://doi.org/10.1016/j.energy.2009.08.033.

    Article  CAS  Google Scholar 

  5. Park HY, Hwang JW, Park KT, Kim S, Jeong YU, Jung HW, Kim SH. Effect of process conditions on dynamics and performance of PEMFC: Comparison with experiments. Thin Solid Films. 2010. https://doi.org/10.1016/j.tsf.2010.01.051.

    Article  Google Scholar 

  6. Yuan W, Tang Y, Pan M, Li Z, Tang B. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renew Energy. 2010;35:656–66. https://doi.org/10.1016/j.renene.2009.08.017.

    Article  CAS  Google Scholar 

  7. Kuo J-K, Yen T-H, Chen C-K. Three-dimensional numerical analysis of PEM fuel cells with straight and wave-like gas flow fields channels. J Power Sour. 2008;177:96–103. https://doi.org/10.1016/j.jpowsour.2007.11.065.

    Article  CAS  Google Scholar 

  8. Roshandel R, Arbabi F, Moghaddam GK. Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells. Renew. Energy. 2012;41:86–95. https://doi.org/10.1016/j.renene.2011.10.008.

    Article  CAS  Google Scholar 

  9. Khazaee I, Ghazikhani M. Performance improvement of proton exchange membrane fuel cell by using annular shaped geometry. J Power Sour. 2011;196:2661–8. https://doi.org/10.1016/j.jpowsour.2010.11.052.

    Article  CAS  Google Scholar 

  10. Bunmark N, Limtrakul S, Fowler MW, Vatanatham T, Gostick J. Assisted water management in a PEMFC with a modified flow field and its effect on performance. Int J Hydrog Energy. 2010;35:6887–96. https://doi.org/10.1016/j.ijhydene.2010.04.027.

    Article  CAS  Google Scholar 

  11. Kuo J-K, Chen C-K. The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation. Int J Heat Mass Transf. 2007;50:4166–79. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.039.

    Article  CAS  Google Scholar 

  12. Hwang JJ, Hwang HS. Parametric studies of a double-cell stack of PEMFC using GrafoilTM flow-field plates. J Power Sour. 2002;104:24–32. https://doi.org/10.1016/S0378-7753(01)00865-5.

    Article  CAS  Google Scholar 

  13. Li X, Sabir I, Park J. A flow channel design procedure for PEM fuel cells with effective water removal. J Power Sour. 2007;163:933–42. https://doi.org/10.1016/j.jpowsour.2006.10.015.

    Article  CAS  Google Scholar 

  14. Kumar A, Reddy RG. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. J Power Sour. 2003;113:11–8. https://doi.org/10.1016/S0378-7753(02)00475-5.

    Article  CAS  Google Scholar 

  15. Ge SH, Yi BL. A mathematical model for PEMFC in different flow modes. J Power Sour. 2003;124:1–11. https://doi.org/10.1016/S0378-7753(03)00584-6.

    Article  CAS  Google Scholar 

  16. Scholta J, Escher G, Zhang W, Kuppers L, Orissen LJ, Lehnert W. Investigation on the influence of channel geometries on PEMFC performance. J Power Sour. 2006;155:66–71. https://doi.org/10.1016/j.jpowsour.2005.05.099.

    Article  CAS  Google Scholar 

  17. Afshari E, Mosharaf-Dehkordi M, Rajabian H. An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor. Energy. 2017;118:705–15. https://doi.org/10.1016/j.energy.2016.10.101.

    Article  CAS  Google Scholar 

  18. Um S, Wang C-Y, Chen KS. Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc. 2000;147:4485–93. https://doi.org/10.1149/1.1394090.

    Article  CAS  Google Scholar 

  19. Springer T. Polymer electrolyte fuel cell model. J Electrochem Soc. 1991;138:2334–42. https://doi.org/10.1149/1.2085971.

    Article  CAS  Google Scholar 

  20. Toghyani S, Moradi Nafchi F, Afshari E, Hasanpour K, Baniasadi E, Atyabi SA. Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int J Hydrog Energy. 2018;43:4534–45. https://doi.org/10.1016/j.ijhydene.2018.01.068.

    Article  CAS  Google Scholar 

  21. Toghyani S, Afshari E, Baniasadi E, Atyabi SA. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim Acta. 2018;267:234–45. https://doi.org/10.1016/j.electacta.2018.02.078.

    Article  CAS  Google Scholar 

  22. Afshari E, Jazayeri SA. Analyses of heat and water transport interactions in a proton exchange membrane fuel cell. J Power Sour. 2009;194:423–32. https://doi.org/10.1016/j.jpowsour.2009.04.057.

    Article  CAS  Google Scholar 

  23. Afshari E, Jazayeri SA. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Convers Manag. 2010;51:655–62. https://doi.org/10.1016/j.enconman.2009.11.004.

    Article  CAS  Google Scholar 

  24. Mazumder S, Cole JV. Rigorous 3-D mathematical modeling of PEM fuel cells. J Electrochem Soc. 2003;150:A1510. https://doi.org/10.1149/1.1615609.

    Article  CAS  Google Scholar 

  25. Hao L, Cheng P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. J Power Sour. 2009;186:104–14. https://doi.org/10.1016/j.jpowsour.2008.09.086.

    Article  CAS  Google Scholar 

  26. Gößling S, Klages M, Haußmann J, Beckhaus P, Messerschmidt M, Arlt T, Kardjilov N, Manke I, Scholta J, Heinzel A. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply. J Power Sour. 2016;306:658–65. https://doi.org/10.1016/j.jpowsour.2015.12.060.

    Article  CAS  Google Scholar 

  27. Um S, Wang C-Y, Chen KS. Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc. 2000;147:4485–93. https://doi.org/10.1149/1.1394090.

    Article  CAS  Google Scholar 

  28. Mann RF, Amphlett JC, Peppley BA, Thurgood CP. Application of Butler–Volmer equations in the modelling of activation polarization for PEM fuel cells. J Power Sour. 2006;161:775–81. https://doi.org/10.1016/j.jpowsour.2006.05.026.

    Article  CAS  Google Scholar 

  29. Nam JH, Kaviany M. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int J Heat Mass Transf. 2003;46:4595–611. https://doi.org/10.1016/S0017-9310(03)00305-3.

    Article  CAS  Google Scholar 

  30. Van Nguyen T. Modeling two-phase flow in the porous electrodes of proton exchange membrane fuel cells using the interdigitated flow fields. Proc Electrochem Soc. 1999;99–14:222–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Afshari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atyabi, S.A., Afshari, E. A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields. J Therm Anal Calorim 135, 1823–1833 (2019). https://doi.org/10.1007/s10973-018-7270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7270-3

Keywords

Navigation