Skip to main content
Log in

Fast pyrolysis of coals under N2 and CO2 atmospheres

Experiments and modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oxyfuel combustion represents one way for cleaner energy production using coal as combustible. The comparison between the oxycombustion and the conventional air combustion process starts with the investigation of the pyrolysis step. The aim of this contribution is to evaluate the impact of N2 (for conventional air combustion) and CO2 (for oxy-fuel combustion) atmospheres during pyrolysis of three different coals. The experiments are conducted in a drop tube furnace over a wide temperature range 800–1400 °C and for residence time ranging between 0.2 and 1.2 s. Coal devolatilized in N2 and CO2 atmospheres at low temperatures (< 1200 °C) provides similar results regarding mass loss, char combustion in thermogravimetric analysis and CO concentration. At higher temperatures (> 1200 °C) and longer residence times (> 0.5 s), the char-CO2 reaction is clearly observed, whose intensity depends on the nature of the coal. Furthermore, the volatile yields are simulated using Kobayashi’s scheme and kinetic parameters are predicted for each coal. The char gasification under CO2 is also accounted for by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du R, Wu K, Zhang L, Xu D, Chao C, Zhang B. A sectioning method for the kinetics study on anthracite pulverized coal combustion. J Therm Anal Calorim. 2017;130(3):2293–9.

    Article  CAS  Google Scholar 

  2. CO2 Emissions From Fuel Combustion Highlights. CO2 emissions from fuel combustion highlights. 2015. [cited 2016 Mar 21]. Available from: http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2015.pdf.

  3. Fujimori T, Yamada T. Realization of oxyfuel combustion for near zero emission power generation. Proc Combust Inst. 2013;34(2):2111–30.

    Article  CAS  Google Scholar 

  4. Singh D, Croiset E, Douglas PL, Douglas MA. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manag. 2003;44(19):3073–91.

    Article  CAS  Google Scholar 

  5. Cormos C-C. Oxy-combustion of coal, lignite and biomass: a techno-economic analysis for a large scale Carbon Capture and Storage (CCS) project in Romania. Fuel. 2016;169:50–7.

    Article  CAS  Google Scholar 

  6. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.

    Article  CAS  Google Scholar 

  7. Bejarano PA, Levendis YA. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust Flame. 2008;153(1–2):270–87.

    Article  CAS  Google Scholar 

  8. Li Q, Zhao C, Chen X, Wu W, Lin B. Properties of char particles obtained under O2/N2 and O2/CO2 combustion environments. Chem Eng Process Process Intensif. 2010;49(5):449–59.

    Article  CAS  Google Scholar 

  9. Qiao Y, Zhang L, Binner E, Xu M, Li C-Z. An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2. Fuel. 2010;89(11):3381–7.

    Article  CAS  Google Scholar 

  10. Rathnam RK, Elliott LK, Wall TF, Liu Y, Moghtaderi B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process Technol. 2009;90(6):797–802.

    Article  CAS  Google Scholar 

  11. Heuer S, Senneca O, Wütscher A, Düdder H, Schiemann M, Muhler M, et al. Effects of oxy-fuel conditions on the products of pyrolysis in a drop tube reactor. Fuel Process Technol. 2016;150:41–9.

    Article  CAS  Google Scholar 

  12. Tomaszewicz M, Tomaszewicz G, Sciazko M. Experimental study on kinetics of coal char-CO2 reaction by means of pressurized thermogravimetric analysis. J Therm Anal Calorim. 2017;130(3):2315–30.

    Article  CAS  Google Scholar 

  13. Solomon PR, Fletcher TH, Pugmire RJ. Progress in coal pyrolysis. Fuel. 1993;72(5):587–97.

    Article  CAS  Google Scholar 

  14. Solomon PR, Fletcher TH. Impact of coal pyrolysis on combustion. Symp Int Combust. 1994;25(1):463–74.

    Article  Google Scholar 

  15. Steer JM, Marsh R, Greenslade M, Robinson A. Opportunities to improve the utilisation of granulated coals for blast furnace injection. Fuel. 2015;151:40–9.

    Article  CAS  Google Scholar 

  16. Li X, Rathnam RK, Yu J, Wang Q, Wall T, Meesri C. Pyrolysis and combustion characteristics of an Indonesian low-rank coal under O2/N2 and O2/CO2 conditions. Energy Fuels. 2010;24(1):160–4.

    Article  CAS  Google Scholar 

  17. Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F. Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor. Appl Energy. 2012;91(1):67–74.

    Article  CAS  Google Scholar 

  18. Molina A, Shaddix CR. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst. 2007;31(2):1905–12.

    Article  CAS  Google Scholar 

  19. Shaddix CR, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst. 2009;32(2):2091–8.

    Article  CAS  Google Scholar 

  20. Chang Q, Gao R, Li H, Dai Z, Yu G, Liu X, et al. Effects of CO2 on coal rapid pyrolysis behavior and chemical structure evolution. J Anal Appl Pyrolysis. 2017;128:370–8.

    Article  CAS  Google Scholar 

  21. Brix J, Jensen PA, Jensen AD. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres. Fuel. 2010;89(11):3373–80.

    Article  CAS  Google Scholar 

  22. Borrego AG, Alvarez D. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres. Energy Fuels. 2007;21(6):3171–9.

    Article  CAS  Google Scholar 

  23. Zhao H, Cao Y, Orndorff W. Gasification characteristics of coal char under CO2 atmosphere. J Therm Anal Calorim. 2014;116:1267–72.

    Article  CAS  Google Scholar 

  24. Zhang X, Liu Y, Wang C, Che D. Experimental study on interaction and kinetic characteristics during combustion of blended coal. J Therm Anal Calorim. 2012;107:935–42.

    Article  CAS  Google Scholar 

  25. Relcom—Reliable Combustion. [cited 2016 Jun 30]. Available from: http://www.relcomeu.com/.

  26. Kobayashi H. Devolatilization of pulverized coal at high temperatures. Thesis, Massachusetts Institute of Technology; 1976 [cited 2016 Jun 13]. Available from: http://dspace.mit.edu/handle/1721.1/26754.

  27. Relcom—Reliable Combustion—Fuels. [cited 2016 Jun 30]. Available from: http://www.relcomeu.com/projects_fuels.php.

  28. Zellagui S, Schönnenbeck C, Zouaoui-Mahzoul N, Leyssens G, Authier O, Thunin E, et al. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace—experimental study and kinetic modeling. Fuel Process Technol. 2016;148:99–109.

    Article  CAS  Google Scholar 

  29. Zellagui S, Trouvé G, Schönnenbeck C, Zouaoui-Mahzoul N, Brilhac J-F. Parametric study on the particulate matter emissions during solid fuel combustion in a drop tube furnace. Fuel. 2017;189:358–68.

    Article  CAS  Google Scholar 

  30. Naredi P, Pisupati S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion. Energy Fuels. 2011;25(6):2452–9.

    Article  CAS  Google Scholar 

  31. Zanzi R, Sjöström K, Björnbom E. Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel. 1996;75(5):545–50.

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9–10):1051–69.

    CAS  Google Scholar 

  33. Du S-W, Chen W-H, Lucas JA. Pulverized coal burnout in blast furnace simulated by a drop tube furnace. Energy. 2010;35(2):576–81.

    Article  CAS  Google Scholar 

  34. Smoot LD, Smith PJ. Coal combustion and gasification. New York: Plenum Press; 1985.

    Book  Google Scholar 

  35. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92.

    Article  CAS  PubMed  Google Scholar 

  36. Morgan ME, Dekker JSA. Characterisation of the combustion performance of a suite of pulverised coals: report on the CC 1 trials. IJmuiden: International Energy Agency, International Flame Research Foundation; 1988.

    Google Scholar 

  37. Authier O, Thunin E, Plion P, Schönnenbeck C, Leyssens G, Brilhac J-F, et al. Kinetic study of pulverized coal devolatilization for boiler CFD modeling. Fuel. 2014;122:254–60.

    Article  CAS  Google Scholar 

  38. Everson RC, Neomagus HWJP, Kaitano R, Falcon R, du Cann VM. Properties of high ash coal-char particles derived from inertinite-rich coal: II. Gasification kinetics with carbon dioxide. Fuel. 2008;87(15–16):3403–8.

    Article  CAS  Google Scholar 

  39. Wang G, Zhang J, Hou X, Shao J, Geng W. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char. Bioresour Technol. 2015;177:66–73.

    Article  CAS  PubMed  Google Scholar 

  40. Tomaszewicz M, Labojko G, Tomaszewicz G, Kotyczka-Moranska M. The kinetics of CO2 gasification of coal char. J Therm Anal Calorim. 2013;113:1327–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Brilhac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zellagui, S., Schönnenbeck, C., Zouaoui, N. et al. Fast pyrolysis of coals under N2 and CO2 atmospheres. J Therm Anal Calorim 133, 1535–1547 (2018). https://doi.org/10.1007/s10973-018-7218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7218-7

Keywords

Navigation