Skip to main content
Log in

Physico-chemical study of norfloxacin and metronidazole binary mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The physico-chemical characterization of norfloxacin commercial sample (NF), norfloxacin anhydrous form A (NFanhA), norfloxacin pentahydrate (NF·5H2O) and metronidazole (MZ) has been carried out. It was determined that the commercial sample is a mixture of 74% anhydrous NF form A and 26% hemipentahydrate NF. From XRPD analysis, it was observed that after the water loss, NF·5H2O undergoes a solid–solid transition and is converting to NFanhA. Solid–liquid equilibrium for NFanhA–MZ and NF·5H2O–MZ binary systems has been investigated using differential scanning calorimetry, and simple eutectic point was observed, in good approximation, at 419 K for all the mixtures studied. The experimental solid–liquid phase diagram was compared with predictions obtained from available eutectic equilibrium models. The results indicate non-ideality for the mixture. The mixing enthalpy was determined at the eutectic composition and the negative value obtained, ΔMH = − 13.28 kJ mol−1, indicates that molecules of the two components form clusters in the eutectic melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guul SJ, Os I, Jounela AJ. The efficacy and tolerability of enalapril in a formulation with a very low dose of hydrochlorothiazide in hypertensive patients resistent to enalapril monotherapy. Am J Hypertens. 1995;8:727–31.

    Article  CAS  Google Scholar 

  2. Huang SM, Temple R, Throckmorton DD, Lesko LJ. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther. 2007;81:298–304.

    Article  CAS  Google Scholar 

  3. Wertheimer AI, Morrison A. Combination drugs: innovation in pharmacotherapy. P&T. 2002;27:44–9.

    Google Scholar 

  4. Kedderis GL. Pharmacokinetics of drug interactions. Adv Pharmacol. 1997;43:189–203.

    Article  CAS  Google Scholar 

  5. Sultana N, Arayne MS, Naveed S. Simultaneous quantitation of captopril and NSAID’s in API, dosage formulations and human serum by RP-HPLC. J Chin Chem Soc. 2010;57:62–7.

    Article  CAS  Google Scholar 

  6. Chandra Avula SG, Alexander K, Riga A. Thermal analytical characterization of mixtures of antipsychotic drugs with various excipients for improved drug delivery. J Therm Anal Calorim. 2016;123(3):1981–92.

    Article  Google Scholar 

  7. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9:866–72.

    Article  CAS  Google Scholar 

  8. Avula SG, Alexander K, Riga A. Predicting eutectic behavior of drugs and excipients by unique calculations. J Therm Anal Calorim. 2010;99(2):655–8.

    Article  CAS  Google Scholar 

  9. Lerdkanchanaporn S, Dollimore D, Evans SJ. Phase diagram for the mixtures of ibuprofen and stearic acid. Thermochim Acta. 2001;367–368:1–8.

    Article  Google Scholar 

  10. Deveswaran R, Sravya M, Bharath S, Basavaraj BV, Madhavan V. Development of modified porous starch as a carrier to improve aqueous solubility. Adv Appl Sci Res. 2012;3:162–70.

    CAS  Google Scholar 

  11. Kiss D, Zelkó R, Novák C, Éhen Z. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim. 2006;84:447–51.

    Article  CAS  Google Scholar 

  12. Mazuel C. Norfloxacin. In: Florey K, editor. Analytical profiles of drug substances, vol. 20. San Diego: Academic Press; 1991. p. 557–600.

    Chapter  Google Scholar 

  13. Chongcharoen W, Byrn SR, Sutanthavibul N. Solid state interconversion between anhydrous norfloxacin and its hydrates. J Pharm Sci. 2008;97:473–89.

    Article  CAS  Google Scholar 

  14. Roy S, Goud NR, Babu Jagadeesh N, Iqbal J, Kruthiventi AK, Nangia A. Crystal structures of norfloxacin hydrates. Cryst Growth Des. 2008;8:4343–6.

    Article  CAS  Google Scholar 

  15. Katdare AV, Ryan JA, Bavitz JF, Erb DM, Guillory JK. Characterization of hydrates of norfloxacin. Mikrochim Acta. 1986;3:1–12.

    Article  CAS  Google Scholar 

  16. Florence AJ, Kennedy AR, Shankland N, Wright E, Al-Rubayi A. Norfloxacin dihydrate. Acta Crystallogr Sect. 2000;C56:1372–3.

    CAS  Google Scholar 

  17. Puechagut HG, Bianchotti J, Chiale CA. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. J Pharm Sci. 1998;87:519–23.

    Article  CAS  Google Scholar 

  18. Yuasa R, Imai J, Morikawa H, Kusajima H, Uchida H, Irikura T. Pharmaceutical studies on hydrates of AM-715. Physical characteristics and intestinal absorption. Yakugaku Zasshi. 1982;102:469–76.

    Article  CAS  Google Scholar 

  19. Deepika M, Jain A, Maheshwari RK, Patidar V. Simultaneous spectrophotometric estimation of metronidazole and norfloxacin in combined tablet formulations using hydrotrophy. Asian J Pharmacol. 2008;1:357–61.

    Google Scholar 

  20. Bharadwaj R, Vidya A, Dewan B, Pal A. An in vitro study to evaluate the synergistic activity of norfloxacin and metronidazole. Indian J Pharmacol. 2003;35:220–6.

    CAS  Google Scholar 

  21. Puigjaner C, Barbas R, Portell A, Font-Bardia M, Alcobe X, Prohens R. Revisiting of the solid state of norfloxacin. Cryst Growth Des. 2010;10:2948–53.

    Article  CAS  Google Scholar 

  22. Barbas R, Prohens R, Puigjaner C. A new polymorph of Norfloxacin. Complete characterization and relative stability of its trimorphic system. J Therm Anal Calorim. 2007;89:687–92.

    Article  CAS  Google Scholar 

  23. Gomes A, Correia L, da Silva Simoes MO, Macedo RO. Development of thermogravimetric method for quantitative determination of metronidazole. J Therm Anal Calorim. 2007;88:383–7.

    Article  CAS  Google Scholar 

  24. Deveswaran R, Sravya M, Bharath S, Basavaraj BV, Madhavan V. Development of modified porous starch as a carrier to improve aqueous solubility. Adv Appl Sci Res. 2012;3:162–70.

    CAS  Google Scholar 

  25. Ramukutty S, Ramachandran E. Crystal growth by solvent evaporation and characterization of metronidazole. J Cryst Growth. 2012;351:47–50.

    Article  CAS  Google Scholar 

  26. Bhowmik BB, Nayak BS, Chatterjee A. Formulation development and characterization of metronidazole microencapsulated bioadhesive vaginal gel. Int J Pharm Pharm Sci. 2009;1:240–57.

    CAS  Google Scholar 

  27. Herman C, Haut B, Aerts L, Leyssens T. Solid-liquid phase diagrams for the determination of the solid state nature of both polymorphs of (RS)-2-(2-oxo-pyrrolidin-1-yl)-butyramide. Int J Pharm. 2012;437:156–61.

    Article  CAS  Google Scholar 

  28. Prankerd RJ, Elsabee MZ. Thermal analysis of chiral drug mixtures: the DSC behavior of mixtures of ephedrine HCl and pseudoephedrine HCl enantiomers. Thermochim Acta. 1995;248:147–60.

    Article  CAS  Google Scholar 

  29. Klímová K, Leitner J. DSC study and phase diagrams calculation of binary systems of paracetamol. Thermochim Acta. 2012;550:59–64.

    Article  Google Scholar 

  30. Costa MC, Boros LAD, Coutinho JAP, Krahenbuhl MA, Meirelles AJA. Low-temperature behavior of biodiesel: solid–liquid phase diagrams of binary mixtures composed of fatty acid methyl esters. Energy Fuels. 2011;25:3244–50.

    Article  CAS  Google Scholar 

  31. Leitner J, Jurik S. DSC study and thermodynamic modelling of the system paracetamol–o-acetylsalicylic acid. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6404-3.

    Google Scholar 

  32. Marini A, Berbenni V, Bruni G, Sinistri C, Maggioni A, Orlandi A, Villa M. Physico-chemical characterization of a novel tricyclic β-lactam antibiotic. J Pharm Sci. 2000;89:232–40.

    Article  CAS  Google Scholar 

  33. Rai US, Pandey P, Rai RN. Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobengene and resorcinol system. Mater Lett. 2002;53:83–90.

    Article  CAS  Google Scholar 

  34. Rai US, Rai RN. Physical chemistry of organic analog of metal-metal eutectic and monotectic alloys. J Cryst Growth. 1998;191:234–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the Project Number POSDRU/107/1.5/S/80765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Meltzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salceanu, DC., Pincu, E., Bruni, G. et al. Physico-chemical study of norfloxacin and metronidazole binary mixtures. J Therm Anal Calorim 132, 1095–1103 (2018). https://doi.org/10.1007/s10973-017-6919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6919-7

Keywords

Navigation