Skip to main content
Log in

A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper reports an investigation on the reduction of synthetic gypsum and a Tunisian phosphogypsum sample in pure nitrogen or loaded with H2O vapor, using graphite or natural coke. Thermogravimetry analysis in non-isothermal conditions showed that H2O gas has no effect on the onset temperature of reduction (T red), whereas the use of coke as a carbon source lowers the T red of about 50 °C but the reduction rate and the conversion degree into CaS are not significantly affected by the coke proportion. The activation energy and the reaction order were determined using the direct Arrhenius plot and the Coats–Redfern kinetic model. These models led to the same reaction order and to close values of activation energies. The FWO isoconversional method shows that the reduction is more complex than a one step process and leads to lower values of activation energy. Addition of 5% mass of various oxide lowered the activation energy; however, the use of the Co2O3/Co3O4 as additive seems to enhance more the reduction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jansen M, Waller A, Verbiest J, Van Landschoot RC, Van Rosmalen GM. Incorporation of phosphoric acid in calcium sulphate hemihydrate from a phosphoric acid process. Ind Cryst. 1984;84:171–6.

    Google Scholar 

  2. Becker P. Phosphates and phosphoric acid. New York: Marcel Dekker; 1989.

    Google Scholar 

  3. Van der Sluis S, Meszaros Y, Gerda M, Marchee WGJ, Wesselimgh HA, Van Rosmalen GM. The digestion of phosphate ore in phosphoric acid. Ind Eng Chem Res. 1987;26:2501–5.

    Article  Google Scholar 

  4. Huffmann EO, Cate WE, Deming ME, Elmore KL. Solubility of phosphates, rates of solution of calcium phosphates in phosphoric acid solutions. J Agric Food Chem. 1957;5(4):266–75.

    Article  Google Scholar 

  5. Ben Brahim F, Mgaidi M, El Maaoui M. Kinetics of leaching of Tunisian phosphate ore particles in dilute phosphoric acid solutions. Can J Chem Eng. 1999;77:136–42.

    Article  CAS  Google Scholar 

  6. Gioia F, Mura G, Viola A. Analysis, simulation and optimization of hemihydrate process for the production of phosphoric acid from calcareous phosphites. Ind Eng Chem Process Des Dev. 1977;16(3):390–9.

    Article  Google Scholar 

  7. Shakourzadeh K, Bloise R, Baratin F. Crystallization of calcium sulphate hemihydrate in reagent-grade phosphoric acid. Ind Miner Tech. 1984;9:443–55.

    Google Scholar 

  8. Ardhaoui K, Ben Cherifa A, Jemal M. Calcium hydroxyapatite solubilisation in the hydrochloric and perchloric acids. J Therm Anal Calorim. 2005;81:251–4.

    Article  CAS  Google Scholar 

  9. Brahim K, Khattech I, Dubès JD, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluorapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:43–50.

    Article  CAS  Google Scholar 

  10. Brahim K, Antar K, Khattech I, Jemal M. Etude thermodynamique et cinétique de l’attaque de la fluorapatite par l’acide phosphorique. Ann Chim Sci Matér. 2006;31(5):611–20.

    Article  CAS  Google Scholar 

  11. Dorozhkin SV. Dissolution kinetics of single fluoroapatite crystals in phosphoric acid solution under the conditions of the wet-process phosphoric acid production. J Prakt Chem. 1996;338:620–6.

    Article  CAS  Google Scholar 

  12. Antar K, Jemal M. Kinetics and thermodynamics of the attack of a phosphate ore by acid solutions at different temperatures. Thermochim Acta. 2008;474:32–5.

    Article  CAS  Google Scholar 

  13. Antar K, Jemal M. Kinetics and thermodynamics of the attack of fluorapatite by a mixture of sulfuric and phosphoric acids at 55 °C. Thermochim Acta. 2007;452:71–5.

    Article  CAS  Google Scholar 

  14. Antar K, Brahim K, Jemal M. Etude cinétique et thermodynamique de l’attaque d’une fluorapatite par des melanges d’acides sulfurique et phosphorique à 25°C. Thermochim Acta. 2006;449:35–41.

    Article  CAS  Google Scholar 

  15. Antar K. Thèse de Doctorat, University of Tunis El Manar, Faculty of Science of Tunis, Juin 2007.

  16. Brahim K, Antar K, Khattech I, Jemal M. Effect of temperature on the attack of fluorapatite by aphosphoric acid solution. Sci Res Essays. 2008;3(1):35–9.

    Google Scholar 

  17. Abdel-Aal EA, Rashed MM, El-Shall H. Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations. Cryst Res Technol. 2004;39:313–21.

    Article  CAS  Google Scholar 

  18. Rutherford PM, Dudas MI, Samek RA. Environmental impacts of phosphogypsum. Sci Total Environ. 1994;149:1–38.

    Article  CAS  Google Scholar 

  19. Rouis MJ, Bensalah A. Phosphogypsum in Tunisia: environmental problems and required solutions. In: Proceedings of the third international symposium on phosphogypsum, Orlando, publication FIPR n° 01-060-083; 1990;1:87–105.

  20. Ragin M, Brooks R, Donalds B. Recovery of sulfur from phosphogypsum: Conversion of calcium sulfate to calcium sulfide. Mines Rep. Invest. 1990;R1:9323.

    Google Scholar 

  21. Trikk EIA, Turn L, Kysik R. Estin svtead akademie. Toim, Keem. 1989;38(3):150–8.

    Google Scholar 

  22. Rice DA, May A, Carter OC, Swanton RG. Recovery of sulfur from phosphogypsum: Conversion of calcium sulfide to sulfur. Trans. Soc. Min. Eng. 1988;284:1848–53.

    CAS  Google Scholar 

  23. Sebbahi S, Chameikh MLO, Sahban F, Aride J, Benarafa L, Belkbir L. Thermal behaviour of Moroccan phosphogypsum. Thermochim Acta. 2007;302:69–75.

    Article  Google Scholar 

  24. Kuusik R, Saikkonen P, Niinisto L. Thermal decomposition of calcium sulfate in carbon monoxide. J Therm Anal. 1985;30:187–93.

    Article  CAS  Google Scholar 

  25. Gruncharov I, Kirilov PL, Pelovski Y, Dombalov I. Isothermal gravimetrical kinetic study of the decomposition of phosphogypsum under CO–CO2–Ar atmosphere. Thermochim Acta. 1985;92:173–6.

    Article  CAS  Google Scholar 

  26. Gruncharov I, Pelovski Y, Dombalov I, Kirilov PL. Thermochemical decomposition of phosphogypsum under H2–CO2–Ar atmosphere. Thermochim Acta. 1985;93:617–20.

    Article  CAS  Google Scholar 

  27. Yang X, Zhang Z, Wang X, Yang L, Zhong B, Liu J. Thermodynamic study of phosphogypsum decomposition by sulfur. J Chem Thermodyn. 2013;57:39–45.

    Article  CAS  Google Scholar 

  28. Reddy PP, Ratinam M, Sundaram N, Satyanarayananan AK. Studies on the reduction of gypsum to calcium sulphide. Chem Age India. 1967;18(4):282–8.

    CAS  Google Scholar 

  29. Strydom CA, Groenewald EM, Potgieter JH. Thermogravimetric studies of the synthesis of CaS from gypsum, CaSO4·2H2O and phosphogypsum. J Therm Anal. 1997;49:1501–7.

    Article  CAS  Google Scholar 

  30. Van der Merwe EM, Strydom CA, Potgieter JH. Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O, gypsum and phosphogypsum in an inert atmosphere. Thermochim Acta. 1999;340–341:431–7.

    Article  Google Scholar 

  31. Sebbahi S, Sahban F, Chameikh MLO, Taibi M, Boukhari A, Aride J. Thermogravimetric and kinetic study of maroccan phosphogypsum in presence of coal. Phys Chem News. 2007;33:126–33.

    CAS  Google Scholar 

  32. Alimi F, Elfil H, Gadri A. Kinetics of the precipitation of calcium sulfate dihydrate in a desalination unit. Desalination. 2003;157:9–16.

    Article  Google Scholar 

  33. ICDD File Number 33-311.

  34. Lide DR. CRC Hand book of chemistry and physics, 79th ed. 1998–1999.

  35. Guilhot B. Etude des formes hydrates du sulfate de calcium (gypse-plâtres). Thèse de Doctorat, Faculté des Sciences de l’université de Grenoble, 1970.

  36. Hudson-Lamb FL, Strydom CA, Potgieter JH. The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochim Acta. 1996;282–283:483–93.

    Article  Google Scholar 

  37. Strydom CA, Potgieter JH. Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochim Acta. 1999;332:89–96.

    Article  CAS  Google Scholar 

  38. Saeed M, Khalique A, Mansoor S, Bhatty MK. Studies on the reduction of gypsum to calcium sulphite with mineral coal as the reactant. Pak J Sci Ind Res. 1983;26(4):272–4.

    CAS  Google Scholar 

  39. Kale BB, Pande AR, Gokarn AN. Studies in the carbothermic reduction of phosphogypsum. Metall Trans B. 1992;23B:567–72.

    Article  CAS  Google Scholar 

  40. Turkdogan ET, Vinters JV. Reduction of calcium sulphate by carbon. Trans Inst Min Metall Sect. 1976;C85:117–27.

    Google Scholar 

  41. Mu J, Raremba G. Effect of carbon and silica on the reduction of calcium sulfate. Thermochim Acta. 1987;114:389–92.

    Article  CAS  Google Scholar 

  42. Wieczorek-Cuirowa K. The thermal behaviour of compounds in the Ca–S–O system. J Therm Anal. 1992;38:523–30.

    Article  Google Scholar 

  43. Database of the AMCSD n°0013978.

  44. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Comprehensive chemical kinetics. Amsterdam: Elsevier; 1980. p. 22.

    Google Scholar 

  45. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  47. Sbirrazzuoli N, Vincent L, Vyazovkin S. Comparison of several computational procedures for evaluating the kinetics of thermally simulated condensed phase reactions. Chemom Intell Lab Syst. 2000;54:53–60.

    Article  CAS  Google Scholar 

  48. Coats AW, Redfern JP. Kinetic parameters from thermogravimetry data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  49. Pilawka R, Maka H. Kinetics of thermal decomposition of isocyanate-epoxy materials crosslinked in the presence of 1-ethylimidazole accelerator. Polimery. 2014;59(3):409–19.

    Article  CAS  Google Scholar 

  50. Apaydin-Varol E, Polat S, Putun AE. Pyrolysis kinetics and thermal decomposition behaviour of polycarbonate—a TGA–FTIR study. Therm Sci. 2014;18(3):833–42.

    Article  Google Scholar 

  51. Khaghanikavkani E, Farid MM. Thermal pyrolysis of polyethylene: kinetic study. Energy Sci Technol. 2011;2(1):1–10.

    CAS  Google Scholar 

  52. Yan Y, Xu J, Pang H, Zhang R, Liao B. Thermal decomposition and kinetics of rigid polyurethane foams derived from sugarcane bagasse. J Wuhan Univ Technol Mater. 2009;24(5):776–80.

    Article  CAS  Google Scholar 

  53. Jelić D, Mentus S, Penavin-Škundrić J, Bodroža D, Antunović B. A thermogravimetric study of reduction of silver oxide under non-isothermal conditions. Contemp Mater. 2010;I-2:144–50.

    Google Scholar 

  54. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  55. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polymer Lett. 1966;4:322–8.

    Article  Google Scholar 

  56. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  57. Akahira T, Sunose T. Method of determinating activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol Sci Technol. 1971;16:22–31.

    Google Scholar 

  58. El-Sayed Saad A, Mostafa ME. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag. 2014;85:165–72.

    Article  Google Scholar 

  59. Alaba PA, Sani YM, Wan Daud WMA. A comparative study on thermal decomposition behavior of biodiesel samples produced from shea butter over microand mesoporous ZSM-5 zeolites using different kinetic models. J Therm Anal Calorim. 2016;126:943–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jemal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antar, K., Jemal, M. A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere. J Therm Anal Calorim 132, 113–125 (2018). https://doi.org/10.1007/s10973-017-6871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6871-6

Keywords

Navigation