Skip to main content
Log in

Thermal analysis of earlywood and latewood of larch (Larix gmelinii (Rupr.) Rupr.) found along the Polar tree line

Correlation of wood destruction values with climatic factors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper deals with the results of a study of the thermodestruction of the earlywood and latewood in the 1988–1998 growth rings of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees growing along the polar tree line (70º52′53″N, 102°58′26″E, Taimyr Peninsula). The study used methods of thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). Thermogravimetric data obtained were analyzed by Ozawa–Flynn–Wall kinetic model. We determined macrokinetic parameters of thermodestruction. Earlywood and latewood showed no significant difference in cellulose/hemicellulose/lignin ratio, whereas they differed significantly in destruction average value of activation energy (197.55 and 55.90 kJ mol−1, respectively). Our analysis of the correlation of thermodestruction values with mean monthly air temperature and precipitation revealed that component composition of both earlywood and latewood was influenced more by the weather conditions at the beginning of the growing season (April–June). Air temperature had markable influence on the wood component composition during cell wall synthesis only in latewood, whereas precipitation influenced the composition in both latewood and earlywood. TG/DTG and DSC methods were found to be promising for developing information on biochemical composition of early and latewood tracheids in stems and for identifying the extent of the influence of climatic changes on cell wall synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hantemirov RM, Shiyatov SG. Main stages of development of woody vegetation on the Yamal Peninsula in the Holocene. Ecology. 1999;3:163–9.

    Google Scholar 

  2. Skre O, Baxter R, Crawford RMM, Callaghan TV, Fedorkov A. How will the tundra-taiga interface respond to climate change. AMBIO Spec Rep. 2002;12:37–46.

    Google Scholar 

  3. Korner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998;115:445–59.

    Article  Google Scholar 

  4. Shiyatov SG. Dynamics of woody and shrub vegetation in the mountains of the Polar Urals under the influence of modern climate change. Ekaterinburg: Ural Branch of Russian Academy of Sciences; 2009.

    Google Scholar 

  5. Kullman L. Change and stability in the altitude of the birch tree-limit in the southern Swidish Scandes 1915–1975. Acta Phytogeogr Suec. 1979;65:1–21.

    Google Scholar 

  6. Tranquillini W. Physiological ecology of the alpine timberline. Ecological studies. New York: Springer; 1979.

    Book  Google Scholar 

  7. Abaimov AP, Zyryanova OA, Prokushkin SG, Koike T, Matsuura Y. Forest ecosystems of the cryolithic zone of Siberia; regional features, mechanisms of stability and pyrogenic changes. Eurasian J For Res. 2000;1:1–10.

    Google Scholar 

  8. Benkova VE, Shashkin AV, Naurzbaev MM, Prokushkin AS, Simanko VV. The Importance of microecological conditions for growth of larch at the timberline on Taimyr Peninsula. For Sci. 2012;4:73–84.

    Google Scholar 

  9. Sharkov VI, Kuybina NI. Hemicellulose chemistry. Forest industry. 1972.

  10. Xu YM, Tu KG, Ye XS, Xiang CY. Variations in wood chemical compositions of Pinus taeda provenances. Chem Ind For Prod. 1997;17:73–8.

    Google Scholar 

  11. Kostiainen K. Wood properties of northern forest trees grown under elevated CO2, O3 and temperature. Dissertationes Forestales. 2007.

  12. Poletto M, Zattera AJ, Forte MMC, Santana RMC. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol. 2012;1:148–53.

    Article  Google Scholar 

  13. Xu J, Lu J, Bao F, Evans R, Downes G, Huang R, Zhao Y. Cellulose microfibril angle variation in Picea crassifolia tree rings improves climate signals on the Tibetan plateau. Trees. 2012;26(3):1007–16.

    Article  Google Scholar 

  14. Antonović A, Jambreković V, Franjić J, Španić N, Pervan S, Ištavnić J, Bublić A. Influence of sampling location on content and chemical composition of the beech native lignin (Fagus sylvatica L.). Period Biologorum. 2010;112(3):327–32.

    Google Scholar 

  15. Riechelmann DFC, Greule M, Treydte K, Esper J, Keppler F. Climate signals in δ13C of wood lignin methoxyl groups from high-elevation larch trees. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;445:60–71.

    Article  Google Scholar 

  16. Gindl W, Grabner M, Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees. 2000;14:409–14.

    Article  Google Scholar 

  17. Loskutov SR, Shapchenkova OA, Aniskina AA. Thermal analysis of wood of the main tree species. Sib For J. 2015;6:17–30.

    Google Scholar 

  18. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Biores Technol. 2014;156:182–8.

    Article  CAS  Google Scholar 

  19. Alwani MS, Khalid HPSA, Sulaiman O, Islam MN, Dungani R. An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources. 2014;9:218–30.

    CAS  Google Scholar 

  20. Islam MA, Asif M, Hameed BH. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Biores Technol. 2015;179:227–33.

    Article  CAS  Google Scholar 

  21. Debal M, Girods P. TG-FTIR kinetic study of the thermal cleaning of wood laminated flooring waste. J Therm Anal Calorim. 2014;118:141–51.

    Article  CAS  Google Scholar 

  22. Norin BN, Ary-Mas. The natural conditions, flora and vegetation. L: Science; 1978.

  23. Abaimov AP, Bondarev AI, Zyryanova OA, Shitov, SA. Forests of Krasnoyarsk Polar region. Science; 1997.

  24. Cwynar LC, Spear RW. Reversion of forest to tundra in the central Yukon. Ecology. 1991;72:202–12.

    Article  Google Scholar 

  25. Kirdyanov AV, Knorre AA, Fedotova EV, Naurzbaev MM, Hagedorn F, Rigling A, Vaganov EA, Moiseev PA. 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas. 2012;41(1):56–67.

    Article  Google Scholar 

  26. Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol. 2008;14(7):1581–91.

    Article  Google Scholar 

  27. Obolenskaya AV, Yelnitskiy ZP, Leonovich AA. Laboratory work on the chemistry of wood and cellulose. Moscow; 1991.

  28. Mamleev V, Dourbigot S, Le Bras M, Lefebvre J. Three model-free methods for calculation of activation energy in TG. Anal Calorim. 2004;78:1009–27.

    Article  CAS  Google Scholar 

  29. Cavallaro G, Donato DI, Lazzara G, Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451–7.

    Article  CAS  Google Scholar 

  30. Nakanishi M, Ogi N, Fukuda Y. Thermogravimetric analysis in steam and oxygen with gas chromatograph mass spectrometry for basic study of biomass gasification. J Therm Anal Calorim. 2010;101:391–6.

    Article  CAS  Google Scholar 

  31. Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ. Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res. 2010;13(3):375–9.

    Article  CAS  Google Scholar 

  32. Jin W, Singh K, Zondlo J. Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture. 2013;3:12–32.

    Article  CAS  Google Scholar 

  33. Brys A, Joanna Brys J, Ostrowska-Ligeza E, Głowacki S, Koczon P. Wood biomass characterization by DSC or FT-IR spectroscopy. J Therm Anal Calorim. 2016;126:27–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tyutkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyutkova, E.A., Loskutov, S.R., Shashkin, A.V. et al. Thermal analysis of earlywood and latewood of larch (Larix gmelinii (Rupr.) Rupr.) found along the Polar tree line. J Therm Anal Calorim 130, 1391–1397 (2017). https://doi.org/10.1007/s10973-017-6550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6550-7

Keywords

Navigation