Skip to main content
Log in

Analysis of thermal, oxidative and cold flow properties of methyl and ethyl esters prepared from soybean and mustard oils

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oilseed crop with high oil content and promising ecological adaptability are potential sources for competitive biodiesel production. This study investigates the scope of utilizing biodiesel development through the methyl and ethyl ester from soybean and mustard oil as an alternative fuel. Methyl and ethyl esters of oils having different fatty acids compositions such as soybean (SOME and SOEE) and mustard oil (MUME and MUEE) were prepared by transesterification with methanol and ethanol in the presence of an alkali-KOH catalyst. The gas chromatographic (GC) analysis of oil samples revealed that primary fatty acid composition in soybean oil was linoleic acid (C18:2, 51.93%), followed by oleic acid (C18:1, 22.82%), palmitic acid (C16:0, 11.56%), linolenic acid (C18:3, 5.95%) and stearic acid (C18:0, 4.32%). Whereas, the main components in mustard oil were erucic acid (C22:1, 32.81%), oleic acid (C18:1, 24.98%), eicosenoic acid (C20:1, 10.44%), linolenic acid (C18:3, 8.61%) and palmitic acid (C16:0, 2.80%). The physicochemical properties (acid value, iodine value, calorific value, flash point, pour point etc.) of methyl and ethyl ester samples were estimated and found to be within the acceptable range of ASTM D6751 standards specifications. The prepared esters and oil samples were examined for cold flow properties by differential scanning calorimetry (DSC). Results revealed better cold flow properties for MUME (−2.55 °C) and MUEE (−3.10 °C) than SOME (3.21 °C) and SOEE (1.83 °C) due to more unsaturated fatty acid content in MU. Thermal and oxidative stability of samples was determined by thermogravimetric analysis (TG) and differential thermal analysis (DTA). The thermal and oxidative stability ranking of the samples was in the order of oil > methyl esters > ethyl esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ma F, Hanna MA. Biodiesel production: a review. Biores Technol. 1999;70(1):1–15.

    Article  CAS  Google Scholar 

  2. Anbumani K, Singh AP. Performance of mustard and neem oil blends with diesel fuel in CI engine. Carbon. 2006;86(78):92.

    Google Scholar 

  3. Peterson CL. Vegetable oil as a diesel fuel: status and research priorities. Trans ASAE. 1986;29(5):1413–22.

    Article  Google Scholar 

  4. Sarala M, Velu V, Anandharamakrishnan C, Singh R. Spray drying of Tinospora cordifolia leaf and stem extract and evaluation of antioxidant activity. J Food Sci Technol. 2012;49(1):119–22.

    Article  CAS  Google Scholar 

  5. Das L, Bora DK, Pradhan S, Naik MK, Naik S. Long-term storage stability of biodiesel produced from Karanja oil. Fuel. 2009;88(11):2315–8.

    Article  CAS  Google Scholar 

  6. Ayetor GK, Sunnu A, Parbey J. Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera. Alex Eng J. 2015;54(4):1285–90.

    Article  Google Scholar 

  7. Atabani AE, Silitonga AS, Badruddin IA, Mahlia T, Masjuki H, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev. 2012;16(4):2070–93.

    Article  Google Scholar 

  8. Dunn RO. Thermal analysis of alternative diesel fuels from vegetable oils. J Am Oil Chem Soc. 1999;76(1):109–15.

    Article  CAS  Google Scholar 

  9. Dunn RO. Crystallization behavior of fatty acid methyl esters. J Am Oil Chem Soc. 2008;85(10):961–72.

    Article  CAS  Google Scholar 

  10. Adhvaryu A, Erhan S, Perez J. Wax appearance temperatures of vegetable oils determined by differential scanning calorimetry: effect of triacylglycerol structure and its modification. Thermochim Acta. 2002;395(1):191–200.

    Article  Google Scholar 

  11. Nik WW, Ani F, Masjuki H. Thermal stability evaluation of palm oil as energy transport media. Energy Convers Manag. 2005;46(13):2198–215.

    Article  Google Scholar 

  12. Zuleta EC, Rios LA, Benjumea PN. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process Technol. 2012;102:96–101.

    Article  CAS  Google Scholar 

  13. Ajithkumar G, Jayadas N, Bhasi M. Analysis of the pour point of coconut oil as a lubricant base stock using differential scanning calorimetry. Lubr Sci. 2009;21(1):13–26.

    Article  Google Scholar 

  14. Coutinho JA, Daridon J-L. The limitations of the cloud point measurement techniques and the influence of the oil composition on its detection. Pet Sci Technol. 2005;23(9–10):1113–28.

    Article  CAS  Google Scholar 

  15. Garcia-Perez M, Adams TT, Goodrum JW, Das K, Geller DP. DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel. Biores Technol. 2010;101(15):6219–24.

    Article  CAS  Google Scholar 

  16. Ramalho E, Carvalho Filho J, Albuquerque A, de Oliveira S, Cavalcanti E, Stragevitch L, et al. Low temperature behavior of poultry fat biodiesel: diesel blends. Fuel. 2012;93:601–5.

    Article  CAS  Google Scholar 

  17. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Biores Technol. 2008;99(6):1716–21.

    Article  CAS  Google Scholar 

  18. Predojević ZJ. The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel. 2008;87(17):3522–8.

    Article  Google Scholar 

  19. Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM. Production of biodiesel from waste frying oils. Waste Manag. 2006;26(5):487–94.

    Article  CAS  Google Scholar 

  20. Demirbas A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel. 2008;87(8):1743–8.

    Article  CAS  Google Scholar 

  21. Allen CA, Watts K, Ackman R, Pegg M. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel. 1999;78(11):1319–26.

    Article  CAS  Google Scholar 

  22. Mazumdar P, Borugadda VB, Goud VV, Sahoo L. Physico-chemical characteristics of Jatropha curcas L. of North East India for exploration of biodiesel. Biomass Bioenerg. 2012;46:546–54.

    Article  CAS  Google Scholar 

  23. Fan X, Burton R, Austic G. Preparation and characterization of biodiesel produced from recycled canola oil. Open Fuels Energy Sci J. 2009;2(1):113–8.

  24. Ramadhas AS, Jayaraj S, Muraleedharan C. Biodiesel production from high FFA rubber seed oil. Fuel. 2005;84(4):335–40.

    Article  CAS  Google Scholar 

  25. Refaat A. Correlation between the chemical structure of biodiesel and its physical properties. Int J Environ Sci Technol. 2009;6(4):677–94.

    Article  CAS  Google Scholar 

  26. Knothe G, Bagby MO, Ryan TW III. Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers. J Am Oil Chem Soc. 1998;75(8):1007–13.

    CAS  Google Scholar 

  27. McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol. 2001;35(9):1742–7.

    Article  CAS  Google Scholar 

  28. Gunstone FD. Rapeseed and canola oil: production, processing, properties and uses. Boca Raton: CRC Press; 2004.

    Google Scholar 

  29. Gunstone FD. Fatty acid and lipid chemistry. London: Blackie Academic & Professional; 1996.

  30. Kaya C, Hamamci C, Baysal A, Akba O, Erdogan S, Saydut A. Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renew Energy. 2009;34(5):1257–60.

    Article  CAS  Google Scholar 

  31. Conceiçao MM, Candeia RA, Dantas HJ, Soledade LE, Fernandes VJ, Souza AG. Rheological behavior of castor oil biodiesel. Energy Fuels. 2005;19(5):2185–8.

    Article  Google Scholar 

  32. Goodrum JW, Eiteman MA. Physical properties of low molecular weight triglycerides for the development of bio-diesel fuel models. Biores Technol. 1996;56(1):55–60.

    Article  CAS  Google Scholar 

  33. Abramovic H, Klofutar C. The temperature dependence of dynamic viscosity for some vegetable oils. Acta Chim Slov. 1998;45(1):69–77.

    CAS  Google Scholar 

  34. Kanitkar A, Balasubramanian S, Lima M, Boldor D. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Biores Technol. 2011;102(17):7896–902.

    Article  CAS  Google Scholar 

  35. Canakci M, Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol. 2008;35(5):431–41.

    Article  CAS  Google Scholar 

  36. Pérez Á, Casas A, Fernández CM, Ramos MJ, Rodríguez L. Winterization of peanut biodiesel to improve the cold flow properties. Biores Technol. 2010;101(19):7375–81.

    Article  Google Scholar 

  37. Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86(10):1059–70.

    Article  CAS  Google Scholar 

  38. Dunn RO. Cold weather properties and performance of biodiesel. In: Knothe G, Van Gerpen J, Krahl J, editors. The biodiesel handbook. Champaign, IL: AOCS Press; 2005. p. 83–121.

  39. Farias AFF, da Conceição MM, Cavalcanti EHS, Melo MAR, dos Santos IMG, de Souza AG. Analysis of soybean biodiesel additive with different formulations of oils and fats. J Therm Anal Calorim. 2016;123(3):2121–7.

    Article  CAS  Google Scholar 

  40. Forero-Doria O, Gallego J, Valdes O, Pinzon-Topal C, Santos LS, Guzmán L. Relationship between oxidative stability and antioxidant activity of oil extracted from the peel of Mauritia flexuosa fruits. J Therm Anal Calorim. 2016;123(3):2173–8.

    Article  CAS  Google Scholar 

  41. Worzakowska M. TG/DSC/FTIR/QMS studies on the oxidative decomposition of terpene acrylate homopolymers. J Therm Anal Calorim. 2017;127(2):2025–35.

    Article  CAS  Google Scholar 

  42. Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128(2):925–35.

    Article  Google Scholar 

  43. Snyder J, Frankel E, Warner K. Headspace volatile analysis to evaluate oxidative and thermal stability of soybean oil. Effect of hydrogenation and additives. J Am Oil Chem Soc. 1986;63(8):1055–8.

    Article  CAS  Google Scholar 

  44. Sricharoenchaikul V, Atong D. Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J Anal Appl Pyrol. 2009;85(1):155–62.

    Article  CAS  Google Scholar 

  45. Park J-Y, Kim D-K, Lee J-P, Park S-C, Kim Y-J, Lee J-S. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Biores Technol. 2008;99(5):1196–203.

    Article  CAS  Google Scholar 

  46. Jain S, Sharma M. Review of different test methods for the evaluation of stability of biodiesel. Renew Sustain Energy Rev. 2010;14(7):1937–47.

    Article  CAS  Google Scholar 

  47. Jain S, Sharma M. Thermal stability of biodiesel and its blends: a review. Renew Sustain Energy Rev. 2011;15(1):438–48.

    Article  CAS  Google Scholar 

  48. Imahara H, Minami E, Hari S, Saka S, editors. Thermal stability of biodiesel fuel as prepared by supercritical methanol process. In 2nd Joint international conference on sustainable energy and environment (SEE 2006), Bangkok, Thailand. 2006.

  49. Santos N, Santos J, Sinfrônio F, Bicudo T, Santos I, Antoniosi Filho N, et al. Thermo-oxidative stability and cold flow properties of babassu biodiesel by PDSC and TMDSC techniques. J Therm Anal Calorim. 2009;97(2):611–4.

    Article  CAS  Google Scholar 

  50. Ikwuagwu O, Ononogbu I, Njoku O. Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Ind Crops Prod. 2000;12(1):57–62.

    Article  CAS  Google Scholar 

  51. Conceição MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ, Souza AG. Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev. 2007;11(5):964–75.

    Article  Google Scholar 

  52. Jayadas N, Nair KP. Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int. 2006;39(9):873–8.

    Article  CAS  Google Scholar 

  53. Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006;83(10):823–33.

    Article  CAS  Google Scholar 

  54. Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol. 2007;88(7):669–77.

    Article  CAS  Google Scholar 

  55. Melo MAMF, de Melo MAR, Pontes ASGC, Farias AFF, Dantas MB, Calixto CD, et al. Non-conventional oils for biodiesel production: a study of thermal and oxidative stability. J Therm Anal Calorim. 2014;117(2):845–9.

    Article  CAS  Google Scholar 

  56. Romeu-Nadal M, Chavez-Servin J, Castellote A, Rivero M, Lopez-Sabater M. Oxidation stability of the lipid fraction in milk powder formulas. Food Chem. 2007;100(2):756–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Centre of Excellence for Sustainable polymers (CoE-SusPol) at IIT Guwahati, for providing the research facilities. We also thank to the Central Instruments Facility (CIF), IIT Guwahati for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav V. Goud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A.K., Achar, S.K., Dasari, S.R. et al. Analysis of thermal, oxidative and cold flow properties of methyl and ethyl esters prepared from soybean and mustard oils. J Therm Anal Calorim 130, 1501–1511 (2017). https://doi.org/10.1007/s10973-017-6424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6424-z

Keywords

Navigation