Skip to main content
Log in

Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites

Pyrolysis, kinetics and mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Graphene-filled high-density polyethylene nanocomposites varying filler’s size (5, 10 and 25 × 10−6 m in diameter) were prepared by the melt-mixing method, and their thermal properties are then investigated by TG, Py–GC/MS and thermal conductivity measurements. Thermal and thermo-oxidative degradation temperatures of HDPE/graphene nanocomposites were substantially improved with increment of filler content and graphene size. According to kinetic analysis of thermal decomposition, the thermal degradation mechanism of HDPE/graphene nanocomposites may efficiently be described by an nth-order model with autocatalysis (Cn). Meanwhile, the activation energy values versus the partial mass loss revealed that graphene nanoparticles take up the heat and obstruct transport of HDPE degradation products efficiently. It was also found that the decomposition in nanocomposites is taking place mainly via chain scission reaction, followed by β-scission propagation reactions, radical reactions and the termination process. Graphene nanocomposites achieved significant improvements in thermal conductivity at low filler concentrations, while the experimental data are in good agreement with the Hatta–Taya theoretical model. Summing up the influence of filler size on thermal properties of polymer matrix, graphene nanoparticles with the higher diameter (25 × 10−6 m) affect more than graphene of 5 × 10−6 and 15 × 10−6 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chapelle E, Garnier B, Bourouga B. Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites. Int J Therm Sci. 2009;48:2221–7.

    Article  CAS  Google Scholar 

  2. Kostagiannakopoulou C, Fiamegkou E, Sotiriadis G, Kostopoulos V. Thermal conductivity of carbon nanoreinforced epoxy composites. J Nanomater. 2016. doi:10.1155/2016/1847325.

    Google Scholar 

  3. Ha SM, Kwon OH, Oh YG, Kim YS, Lee SG, Won JC, Cho KS, Kim BG, Yoo Y. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system. Sci Technol Adv Mater. 2015;16:065001–10.

    Article  Google Scholar 

  4. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci. 2011;56:1178–271.

    Article  CAS  Google Scholar 

  5. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;114:1606–18.

    Article  CAS  Google Scholar 

  6. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris DN. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  7. Lin Y, Jin J, Song M. Preparation and characterization of covalent polymer functionalized graphene oxide. J Mater Chem. 2011;21:3455–61.

    Article  CAS  Google Scholar 

  8. Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW. Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer. 2011;52:1837–46.

    Article  CAS  Google Scholar 

  9. Ran S, Chen C, Guo Z, Fang Z. Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci. 2014;131:40520–5.

    Article  Google Scholar 

  10. Guo Z, Ye R, Zhao L, Ran S, Fang Z, Li J. Fabrication of fullerene-decorated graphene oxide and its influence on flame retardancy of high density polyethylene. Compos Sci Technol. 2016;129:123–9.

    Article  CAS  Google Scholar 

  11. Bourque AJ, Locker RC, Tsou AH, Vadlamudi M. Nucleation and mechanical enhancements in polyethylene–graphene nanoplate composites. Polymer. 2016;99:263–72.

    Article  CAS  Google Scholar 

  12. Zhao L, Guo Z, Ran S, Cao Z, Fang Z. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J Therm Anal Calorim. 2014;115:1235–44.

    Article  CAS  Google Scholar 

  13. Shehzad F, Daud M, Harthi MA. Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J Therm Anal Calorim. 2016;123:1501–11.

    Article  CAS  Google Scholar 

  14. Achaby ME, Qaiss A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater Des. 2013;44:81–9.

    Article  Google Scholar 

  15. Fim F, Basso NRS, Graebin AP, Azambuja DS, Galland GB. Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci. 2013;128:2630–7.

    Article  CAS  Google Scholar 

  16. Tarani E, Wurm A, Schick C, Bikiaris DN, Chrissafis K, Vourlias G. Effect of graphene nanoplatelets diameter on non-isothermal crystallization kinetics and melting behavior of high density polyethylene nanocomposites. Thermochim Acta. 2016;643:94–103.

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  18. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679–84.

    Article  CAS  Google Scholar 

  19. Rybinski P, Anyszka R, Imiela M, Sicinski M, Gozdek T. Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. J Therm Anal Calorim. 2017;127:2383–96.

    Article  CAS  Google Scholar 

  20. Chen K, Susner MA, Vyazovkin S. Effect of the brush structure on the degradation mechanism of polystyrene–clay nanocomposites. Macromol Rapid Commun. 2005;26:690–5.

    Article  CAS  Google Scholar 

  21. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene–clay systems. J Phys Chem B. 2007;111:12685–92.

    Article  CAS  Google Scholar 

  22. Zhan YQ, Lei YJ, Meng FB, Zhong JC, Zhao R, Liu XB. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route. J Mater Sci. 2011;46:824–31.

    Article  CAS  Google Scholar 

  23. Roumeli E, Markoulis A, Chrissafis K, Avgeropoulos A, Bikiaris DN. Substantial enhancement of PP random copolymer’s thermal stability due to the addition of MWCNTs and nanodiamonds: decomposition kinetics and mechanism study. J Anal Appl Pyrol. 2014;106:71–80.

    Article  CAS  Google Scholar 

  24. Marosfoi BB, Szabo A, Marosi Gy, Tabuani D, Camino G, Pagliari S. Thermal and spectroscopic characterization of polypropylene–carbon nanotube composites. J Therm Anal Calorim. 2006;86:669–73.

    Article  CAS  Google Scholar 

  25. Zanetti M, Bracco P, Costa L. Thermal degradation behaviour of PE/clay nanocomposites. Polym Degrad Stab. 2004;85:657–65.

    Article  CAS  Google Scholar 

  26. Wen X, Wang YJ, Gong J, Liu J, Tian NN, Wang YH, Jiang ZW, Qiu J, Tang T. Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym Degrad Stab. 2012;97:793–801.

    Article  CAS  Google Scholar 

  27. Vyazovkin S. Isoconversional kinetics. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry. Columbus: Elsevier; 2008. p. 503–38.

    Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  29. Gao Z, Amasaki I, Nakada M. A thermogravimetric study on thermal degradation of polyethylene. J Anal Appl Pyrol. 2003;67:1–9.

    Article  CAS  Google Scholar 

  30. Sinfronio FSM, Santos JCO, Pereira LG, Souza AG, Conceicao MM, Fernandes VJ, Fonseca VM. Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J Therm Anal Calorim. 2005;79:393–9.

    Article  CAS  Google Scholar 

  31. Holmstrom A, Sorvik EM. Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content. II. Structural changes occurring in low density polyethylene at oxygen contents less than 0.0005%. J Appl Polym Sci. 1974;18:761–78.

    Article  CAS  Google Scholar 

  32. Serrano DP, Aguado J, Escola JM, Rodriguez JM, San Miguel G. An investigation into the catalytic cracking of LDPE using Py–GC/MS. J Anal Appl Pyrol. 2005;74:370–8.

    Article  CAS  Google Scholar 

  33. Bockhorn H, Hornung A, Schawaller D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrol. 1999;48:93–109.

    Article  CAS  Google Scholar 

  34. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and polypropylene. Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  35. Zhang F, Li Q, Liu Y, Zhang S, Wu C, Guo W. Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim. 2016;123:431–7.

    Article  CAS  Google Scholar 

  36. Nielsen LE. Thermal conductivity of particulate filled polymers. J Appl Polym Sci. 1973;17:3819–20.

    Article  Google Scholar 

  37. Weber E, Clingerman M, King J. Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers. J Appl Polym Sci. 2003;88:112–22.

    Article  CAS  Google Scholar 

  38. Keblinski P, Phillpot S, Choi S, Eastman J. Mechanics of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

  39. Lin W, Zhang R, Wong CP. Modeling of thermal conductivity of graphite nanosheet composites. J Electron Mater. 2010;39:268–72.

    Article  CAS  Google Scholar 

  40. Maxwell JC. A treatise on electricity and magnetism. 3rd ed. New York: Dover; 1954.

    Google Scholar 

  41. Tobias CW. Advances in electrochemistry and electrochemical engineering. New York: Interscience; 1962.

    Google Scholar 

  42. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  43. Cheng SC, Vachon RI. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transf. 1969;12:249–64.

    Article  CAS  Google Scholar 

  44. Lewis T, Nielsen L. Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci. 1970;14:1449–71.

    Article  CAS  Google Scholar 

  45. Hatta H, Taya M. Equivalent inclusion method for steady state. heat conduction in composites. Int J Eng Sci. 1986;24:1159–72.

    Article  CAS  Google Scholar 

  46. Hill RF, Supancic PH. Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc. 2002;85:851–7.

    Article  CAS  Google Scholar 

  47. Tanimoto M, Yamagata T, Miyata K, Ando S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation and polymer chain rigidity. ACS Appl Mater Interfaces. 2013;10:4374–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chrissafis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarani, E., Terzopoulou, Z., Bikiaris, D.N. et al. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J Therm Anal Calorim 129, 1715–1726 (2017). https://doi.org/10.1007/s10973-017-6342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6342-0

Keywords

Navigation