Skip to main content
Log in

Isothermal and nonisothermal crystallization kinetics of novel biobased poly(ethylene succinate-co-ethylene sebacate) copolymers from the amorphous state

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the isothermal and nonisothermal crystallization kinetics of three novel biobased poly(ethylene succinate-co-ethylene sebacate) (PESSe) copolymers was systematically investigated with differential scanning calorimetry under different crystallization conditions from the amorphous state. For the isothermal cold crystallization kinetics study, the Avrami equation could well describe the crystallization process of PESSe at various crystallization temperatures. All three PESSe copolymers crystallized through the same crystallization mechanism; moreover, the overall isothermal cold crystallization rate of PESSe decreased with increasing ethylene sebacate (ESe) comonomer content. The nonisothermal cold crystallization kinetics of PESSe was also studied at different heating rates. With increasing ESe content or heating rate, the nonisothermal cold crystallization exotherm of PESSe copolymers shifted to high temperature range. Both the crystallization rate parameter and crystallization rate coefficient of PESSe copolymers decreased with increasing ESe content, indicating that PESSe copolymer with higher ESe content crystallized more slowly than that with lower ESe content. The Ozawa equation was used to analyze the nonisothermal cold crystallization kinetics of PESSe copolymers, which was found to fit the crystallization process very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Papageorgiou GZ, Bikiaris DN, Achilias DS, Papastergiadis E, Docoslis A. Crystallization and biodegradation of poly(butylene azelate): comparison with poly(ethylene azelate) and poly(propylene azelate). Thermochim Acta. 2011;515:13–23.

    Article  CAS  Google Scholar 

  2. Zhou C, Wei Z, Yu Y, Wang Y, Li Y. Biobased copolyesters from renewable resources: synthesis and crystallization kinetics of poly(propylene sebacate-co-isosorbide sebacate). RSC Adv. 2015;5:68688–99.

    Article  CAS  Google Scholar 

  3. Singhvi M, Gokhale D. Biomass to biodegradable polymer (PLA). RSC Adv. 2013;3:13558–68.

    Article  CAS  Google Scholar 

  4. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081–92.

    Article  CAS  Google Scholar 

  5. Ishii N, Inoue Y, Shimada K, Tezuka Y, Mitomo H, Kasuya K. Fungal degradation of poly(ethylene succinate). Polym Degrad Stab. 2007;94:44–52.

    Article  Google Scholar 

  6. Lu J, Qiu Z, Yang W. Effects of blend composition and crystallization temperature on unique crystalline morphologies of miscible poly(ethylene succinate)/poly(ethylene oxide) blends. Macromolecules. 2008;41:141–8.

    Article  CAS  Google Scholar 

  7. Woo EM, Hsieh Y, Chen W, Kuo N, Wang L. Immiscibility–miscibility phase transformation in blends of poly(ethylene succinate) with poly(l-lactic acid)s of different molecular weights. J Polym Sci Polym Phys. 2010;48:1135–47.

    Article  CAS  Google Scholar 

  8. Tezuka Y, Ishii N, Kasuya K, Mitomo H. Degradation of poly(ethylene succinate) by mesophilic bacteria. Polym Degrad Stab. 2004;84:115–21.

    Article  CAS  Google Scholar 

  9. Ueda AS, Chatani Y, Tadokoro H. Structure studies of polyesters. IV. Molecular and crystal structure of poly(ethylene succinate) and poly(ethylene oxalate). Polym J. 1971;2:387–94.

    Article  CAS  Google Scholar 

  10. Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate)(PES). 2. Crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules. 2000;1:713–20.

    Article  CAS  Google Scholar 

  11. Qiu Z, Ikehara T, Nishi T. Crystallization behavior of biodegradable poly(ethylene succiante) from the amorphous state. Polymer. 2003;44:5429–37.

    Article  CAS  Google Scholar 

  12. Ichikawa Y, Washiyama J, Moteki Y, Noguchi K. Crystal modification in poly(ethylene succiante). Polymer. 1995;27:1264–6.

    Article  CAS  Google Scholar 

  13. Zeng J, Zhu Q, Li Y, Qiu Z, Wang Y. Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors. J Phys Chem B. 2010;114:14827–33.

    Article  CAS  Google Scholar 

  14. Yang Y, Qiu Z. Crystallization and melting behavior of biodegradable poly(ethylene succinate-co-6 mol% butylene succinate). J Appl Polym Sci. 2011;122:105–11.

    Article  CAS  Google Scholar 

  15. Li X, Qiu Z. Synthesis and properties of novel poly(ethylene succinate-co-decamethylene succinate) copolymers. RSC Adv. 2015;5:103713–21.

    Article  CAS  Google Scholar 

  16. Li X, Qiu Z. Crystallization kinetics, morphology, and mechanical properties of novel poly(ethylene succinate-co-octamethylene succinate). Polym Test. 2015;48:125–32.

    Article  CAS  Google Scholar 

  17. Wu H, Qiu Z. Synthesis, Crystallization kinetics and morphology of novel poly(ethylene succinate-co-ethylene adipate) copolymers. CrystEngComm. 2012;14:3586–95.

    Article  CAS  Google Scholar 

  18. Qiu S, Su Z, Qiu Z. Crystallization kinetics, morphology and mechanical properties of novel biodegradable poly(ethylene succinate-co-ethylene suberate) copolyesters. Ind Eng Chem Res. 2016;55:10286–93.

    Article  CAS  Google Scholar 

  19. Qiu S, Su Z, Qiu Z. Synthesis, thermal and mechanical properties and hydrolytic degradation of novel bio-based poly(ethylene succinate-co-ethylene sebacate) copolymers. (to be submitted for publication).

  20. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;3:568–75.

    Article  Google Scholar 

  21. Zeng J, Srinivansan M, Li S, Narayan R, Wang Y. Nonisothermal and isothermal cold crystallization behavior of biodegradable poly(p-dioxanone). Ind Eng Chem Res. 2011;50:4471–7.

    Article  CAS  Google Scholar 

  22. Zhao Y, Qiu Z, Yan S, Yang W. Crystallization behavior of biodegradable poly(l-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci. 2011;51:1564–73.

    Article  CAS  Google Scholar 

  23. Yu J, Qiu Z. Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(l-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res. 2011;50:12579–86.

    Article  CAS  Google Scholar 

  24. Saad GR, Elsawy MA, Aziz MSA. Nonisothermal crystallization behavior and molecular dynamics of poly(lactic acid) plasticized with jojoba oil. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5910-z.

    Google Scholar 

  25. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  26. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119:635–42.

    Article  CAS  Google Scholar 

  27. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  28. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  29. Wunderlich B. Macromolecular physics, vol. 2. New York: Academic Press; 1976.

    Google Scholar 

  30. Zhang R, Zheng H, Lou X, Ma D. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci. 1994;51:51–6.

    Article  CAS  Google Scholar 

  31. Khanna Y. A barometer of crystallization rates of polymeric materials. Polym Eng Sci. 1990;30:1615–9.

    Article  CAS  Google Scholar 

  32. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  33. Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T. Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate). Polym J. 2004;36:642–6.

    Article  CAS  Google Scholar 

  34. Qiu S, Qiu Z. Crystallization kinetics and morphology of poly(ethylene suberate). J Appl Polym Sci. 2016;133:43086.

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation, China (51373020, 51573016 and 51521062) for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Su, Z. & Qiu, Z. Isothermal and nonisothermal crystallization kinetics of novel biobased poly(ethylene succinate-co-ethylene sebacate) copolymers from the amorphous state. J Therm Anal Calorim 129, 801–808 (2017). https://doi.org/10.1007/s10973-017-6234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6234-3

Keywords

Navigation