Skip to main content
Log in

Enhanced crystallization rate of bio-based poly(butylene succinate-co-propylene succinate) copolymers motivated by glycerol

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Isothermal crystallization kinetics are performed in poly(butylene succinate-co-propylene succinate) (PBSPS) in a BS/PS ratio of 10/0(PBS) to 7/3 with 0 and 0.02 mol% glycerol, indicating PBSPS copolymers are 3D growths initiated by heterogeneous nucleation. Crystallization growth rates of BS/PS = 10/0(PBS) to 7/3 with 0.02 mol% glycerol are faster than with 0 mol% glycerol, for a given temperature range. Nonisothermal crystallization kinetics are performed to clarify the effects of different glycerol proportions for BS/PS = 7/3. The 0.01 mol% glycerol is used to form a nucleation site, in which the kinetic energy of the molecular chain can be driven to increase the packing ability. When glycerol is increased to 0.02 mol%, the restriction of the glycerol on the movement of the molecular chain becomes more extensive to decrease the relative crystallinity. Hence, a small amount of glycerol content can improve the relative crystallinity and crystallization rate of PBSPS copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596. https://doi.org/10.1016/j.jclepro.2017.02.132

    Article  CAS  Google Scholar 

  2. Spierling S, Knüpffer E, Behnsen H et al (2018) Bio-based plastics - A review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  3. Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39. https://doi.org/10.1016/j.copbio.2016.02.031

    Article  CAS  PubMed  Google Scholar 

  4. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Avella M, Buzarovska A, Errico M et al (2009) Eco-Challenges of Bio-Based Polymer Composites Materials 2:911–925. https://doi.org/10.3390/ma2030911

    Article  CAS  Google Scholar 

  6. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  CAS  Google Scholar 

  7. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379. https://doi.org/10.1039/c3ta12555f

    Article  CAS  Google Scholar 

  8. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740. https://doi.org/10.1007/s00253-007-1057-y

    Article  CAS  PubMed  Google Scholar 

  9. Zia KM, Noreen A, Zuber M et al (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int J Biol Macromol 82:1028–1040. https://doi.org/10.1016/j.ijbiomac.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  10. Johansson C, Bras J, Mondragon I et al (2012) Renewable Fibers and Bio-based Materials for Packaging Applications – A Review of Recent Developments. BioResources 7:2506–2552. https://doi.org/10.15376/biores.7.2.2506-2552

  11. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016

    Article  CAS  Google Scholar 

  12. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56. https://doi.org/10.1016/j.jclepro.2011.10.003

    Article  CAS  Google Scholar 

  13. Yin G-Z, Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27:38. https://doi.org/10.1007/s10965-020-2004-1

    Article  CAS  Google Scholar 

  14. Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study Polymer 46:12081–12092. https://doi.org/10.1016/j.polymer.2005.10.073

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Crystallization Kinetics of Biodegradable Poly(butylene succinate) under Isothermal and Non-Isothermal Conditions. Macromol Chem Phys 208:1250–1264. https://doi.org/10.1002/macp.200700084

    Article  CAS  Google Scholar 

  16. Jin T, Zhou M, Hu S et al (2014) Effect of molecular weight on the properties of poly(butylene succinate). Chin J Polym Sci 32:953–960. https://doi.org/10.1007/s10118-014-1463-4

    Article  CAS  Google Scholar 

  17. Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B Polym Phys 37:1357–1366

    Article  CAS  Google Scholar 

  18. Xu J, Guo B-H (2010) Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications. In: Chen GG-Q (ed) Plastics from Bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 347–388

  19. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  20. Gigli M, Fabbri M, Lotti N et al (2016) Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur Polym J 75:431–460. https://doi.org/10.1016/j.eurpolymj.2016.01.016

    Article  CAS  Google Scholar 

  21. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-State Microstructures, Thermal Properties, and Crystallization of Biodegradable Poly(butylene succinate) (PBS) and Its Copolyesters. Biomacromol 2:605–613. https://doi.org/10.1021/bm015535e

    Article  CAS  Google Scholar 

  22. Yang Y, Qiu Z (2011) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. CrystEngComm 13:2408. https://doi.org/10.1039/c0ce00598c

    Article  CAS  Google Scholar 

  23. Liu F-Y, Xu C-L, Zeng J-B et al (2013) Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Thermochim Acta 568:38–45. https://doi.org/10.1016/j.tca.2013.06.025

    Article  CAS  Google Scholar 

  24. Wang G, Qiu Z (2012) Synthesis, Crystallization Kinetics, and Morphology of Novel Biodegradable Poly(butylene succinate-co-hexamethylene succinate) Copolyesters. Ind Eng Chem Res 51:16369–16376. https://doi.org/10.1021/ie302817k

    Article  CAS  Google Scholar 

  25. Dai X, Qiu Z (2017) Crystallization kinetics, morphology, and hydrolytic degradation of novel biobased poly(butylene succinate-co-decamethylene succinate) copolyesters. Polym Degrad Stab 137:197–204. https://doi.org/10.1016/j.polymdegradstab.2017.01.020

    Article  CAS  Google Scholar 

  26. Chen C-H, Yang C-S, Chen M et al (2011) Synthesis and characterization of novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. Express Polym Lett 5:284–294. https://doi.org/10.3144/expresspolymlett.2011.29

    Article  CAS  Google Scholar 

  27. Lu J-S, Chen M, Lu S-F, Chen C-H (2011) Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. J Polym Res 18:1527–1537. https://doi.org/10.1007/s10965-010-9558-2

    Article  CAS  Google Scholar 

  28. Xie W-J, Zhou X-M (2015) Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters. Mater Sci Eng C 46:366–373. https://doi.org/10.1016/j.msec.2014.10.063

    Article  CAS  Google Scholar 

  29. Bikiaris DN, Papageorgiou GZ, Papadimitriou SA et al (2009) Novel Biodegradable Polyester Poly(Propylene Succinate): Synthesis and Application in the Preparation of Solid Dispersions and Nanoparticles of a Water-Soluble Drug. AAPS PharmSciTech 10:138–146. https://doi.org/10.1208/s12249-008-9184-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bikiaris DN, Achilias DS (2006) Synthesis of poly(alkylene succinate) biodegradable polyesters I. Mathematical modelling of the esterification reaction. Polymer 47:4851–4860. https://doi.org/10.1016/j.polymer.2006.04.044

    Article  CAS  Google Scholar 

  31. Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2006) Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab 91:60–68. https://doi.org/10.1016/j.polymdegradstab.2005.04.028

    Article  CAS  Google Scholar 

  32. Papageorgiou GZ, Bikiaris DN (2007) Synthesis, Cocrystallization, and Enzymatic Degradation of Novel Poly(butylene- co -propylene succinate) Copolymers. Biomacromol 8:2437–2449. https://doi.org/10.1021/bm0703113

    Article  CAS  Google Scholar 

  33. Xu Y, Xu J, Liu D et al (2008) Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 109:1881–1889. https://doi.org/10.1002/app.24544

    Article  CAS  Google Scholar 

  34. Xu Y, Xu J, Guo B, Xie X (2007) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys 45:420–428. https://doi.org/10.1002/polb.20877

    Article  CAS  Google Scholar 

  35. Lu S-F, Chen M, Shih Y-C, Chen CH (2010) Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys 48:1299–1308. https://doi.org/10.1002/polb.22027

    Article  CAS  Google Scholar 

  36. Chan H, Cho C, Hsu K et al (2019) Smart Wearable Textiles with Breathable Properties and Repeatable Shaping in In Vitro Orthopedic Support from a Novel Biomass Thermoplastic Copolyester. Macromol Mater Eng 304:1900103. https://doi.org/10.1002/mame.201900103

    Article  CAS  Google Scholar 

  37. Chen C-W, Hsu T-S, Rwei S-P (2019) Effect of Ethylenediaminetetraacetic Acid on Unsaturated Poly(Butylene Adipate-Co-Butylene Itaconate) Copolyester with Low-Melting Point and Controllable Hardness. Polymers 11:611. https://doi.org/10.3390/polym11040611

    Article  CAS  PubMed Central  Google Scholar 

  38. Cho C-J, Chang Y-S, Lin Y-Z et al (2020) Green electrospun nanofiber membranes filter prepared from novel biomass thermoplastic copolyester: Morphologies and filtration properties. J Taiwan Inst Chem Eng 106:206–214. https://doi.org/10.1016/j.jtice.2019.11.002

    Article  CAS  Google Scholar 

  39. Chen C-W, Hsu T-S, Huang K-W, Rwei S-P (2020) Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics. Thermal and Mechanical Properties Polymers 12:1160. https://doi.org/10.3390/polym12051160

    Article  CAS  Google Scholar 

  40. Hsu K-H, Chen C-W, Wang L-Y et al (2019) Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties. Soft Matter 15:9710–9720. https://doi.org/10.1039/C9SM01958H

    Article  CAS  PubMed  Google Scholar 

  41. Liu G-C, Zhang W-Q, Zhou S-L et al (2016) Improving crystallization and processability of PBS via slight cross-linking. RSC Adv 6:68942–68951. https://doi.org/10.1039/C6RA13488B

    Article  CAS  Google Scholar 

  42. Liu G-C, Zhang W-Q, Wang X-L, Wang Y-Z (2017) Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin Chem Lett 28:354–357. https://doi.org/10.1016/j.cclet.2016.10.014

    Article  CAS  Google Scholar 

  43. Ma P, Ma Z, Dong W et al (2013) Structure/Property Relationships of Partially Crosslinked Poly(butylene succinate). Macromol Mater Eng 298:910–918. https://doi.org/10.1002/mame.201200209

    Article  CAS  Google Scholar 

  44. Avrami M (1940) Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  45. Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H (2016) Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J Polym Res 23:144. https://doi.org/10.1007/s10965-016-1045-y

    Article  CAS  Google Scholar 

  46. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575. https://doi.org/10.1002/pen.11700

    Article  CAS  Google Scholar 

  47. Durmus A, Yalçınyuva T (2009) Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 16:489–498. https://doi.org/10.1007/s10965-008-9252-9

    Article  CAS  Google Scholar 

  48. Chen C-W, Hsu T-S, Rwei S-P (2020) Isothermal Kinetics of Poly(butylene adipate-co-butylene itaconate) Copolyesters with Ethylenediaminetetraacetic Acid. ACS Omega 5:3080–3089. https://doi.org/10.1021/acsomega.9b04315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of Taiwan (MOST 109-2634-F-027-001), (MOST 109-2622-E-027-004 -CC3), and (MOST 109-2221-E-027 -114 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chin-Wen Chen or Chi-Ching Kuo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, HI., Wang, LY., Chen, CW. et al. Enhanced crystallization rate of bio-based poly(butylene succinate-co-propylene succinate) copolymers motivated by glycerol. J Polym Res 28, 92 (2021). https://doi.org/10.1007/s10965-021-02460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02460-x

Keywords

Navigation