Skip to main content
Log in

Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2·H2O precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mn(H2PO2)2·H2O was successfully synthesized by a simple precipitation method. The LiMnPO4 was further generated by the solid-state reaction between the new synthesized Mn(H2PO2)2·H2O precursor and LiCl at 700 °C in N2 atmosphere. The LiMnPO4 was generated via four decomposition steps. The samples were characterized by FTIR/FT-Raman, XRD, SEM, AAS/AES, and TG/DTG/DTA techniques. The kinetic parameters of the LiMnPO4 formation were determined from TG data at four heating rates. The exact activation energy (E) values were calculated by the iterative methods. The most probable mechanism functions g(α) were evaluated from 35 models by using the masterplots and nonlinear model-fitting methods. The most probable mechanism functions g(α) of the LiMnPO4 formation were found to be the P1/3 (first step), R1 (second step), R2 (third step), and D4 (final step), respectively. The thermodynamic functions of activation (ΔS , ΔH , and ΔG ) were calculated by the activated complex theory of Eyring. The kinetic parameters and thermodynamic functions of the formation of LiMnPO4 from the a new Mn(H2PO2)2·H2O precursor are reported the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Wang F, Yang J, Gao P, Nuli Y, Wang J. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. J Power Sources. 2011;196:10258–62.

    Article  CAS  Google Scholar 

  2. Cao Y, Duan J, Hu G, Jiang F, Peng Z, Du K, Guo H. Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim Acta. 2013;98:183–9.

    Article  CAS  Google Scholar 

  3. Devaraju M, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater. 2012;2:284–97.

    Article  CAS  Google Scholar 

  4. Zaghib K, Mauger A, Groult H, Goodenough J, Julien C. Advanced electrodes for high power Li-ion batteries. Materials. 2013;6:1028–49.

    Article  CAS  Google Scholar 

  5. Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J. LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries. Electrochim Acta. 2015;153:385–92.

    Article  CAS  Google Scholar 

  6. Duan J, Cao Y, Jiang J, Du K, Peng Z, Hu G. Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance. J Power Sources. 2014;268:146–52.

    Article  CAS  Google Scholar 

  7. Sronsri C, Noisong P, Danvirutai C. Synthesis, non-isothermal kinetic and thermodynamic studies of the formation of LiMnPO4 from NH4MnPO4·H2O precursor. Solid State Sci. 2014;32:67–75.

    Article  CAS  Google Scholar 

  8. Zheng J, Ni L, Lu Y, Qin C, Liu P, Wu T, Tang Y, Chen Y. High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction. J Power Sources. 2015;282:444–51.

    Article  CAS  Google Scholar 

  9. Zong J, Liu X. Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochim Acta. 2014;116:9–18.

    Article  CAS  Google Scholar 

  10. Gu Y, Wang H, Zhu Y, Wang L, Qian Y, Chu Y. Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries. Solid State Ion. 2015;274:106–10.

    Article  CAS  Google Scholar 

  11. Hu L, Qiu B, Xia Y, Qin Z, Qin L, Zhou X, Liu Z. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. J Power Sources. 2014;248:246–52.

    Article  CAS  Google Scholar 

  12. Sronsri C, Noisong P, Danvirutai C. Synthesis, characterization and vibrational spectroscopic study of Co, Mg co-doped LiMnPO4. Spectrochim Acta Part A. 2016;153:436–44.

    Article  CAS  Google Scholar 

  13. Cheng G, Zuo P, Wang L, Shi W, Ma Y, Du C, Cheng X, Gao Y, Yin G. High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. J Solid State Electrochem. 2015;19:281–8.

    Article  CAS  Google Scholar 

  14. Wang L, Sun W, Li J, Gao J, He X, Jiang C. Synthesis of electrochemically active LiMnPO4 via MnPO4·H2O with different morphology prepared by facile precipitation. Int J Electrochem Sci. 2012;7:3591–600.

    CAS  Google Scholar 

  15. Tang G, Wang X, Zhang R, Yang W, Hu Y, Song L, Gong X. Facile synthesis of lanthanum hypophosphite and its application in glass-fiber reinforced polyamide 6 as a novel flame retardant. Compos A. 2013;54:1–9.

    Article  CAS  Google Scholar 

  16. Noisong P, Danvirutai C. A new synthetic route, characterization and vibrational studies of manganese hypophosphite monohydrate at ambient temperature. Spectrochimica Acta Part A. 2010;77:890–4.

    Article  Google Scholar 

  17. Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–604.

    Article  CAS  Google Scholar 

  18. Kim J, Cheruvally G, Choi J, Kim J, Ahn J, Cho G, Kim K, Ahn H. Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material. J Power Sources. 2007;166:211–8.

    Article  CAS  Google Scholar 

  19. Liu X, Tang J, Qin X, Deng Y, Chen G. Supercritical-hydrothermal accelerated solid state reaction route for synthesis of LiMn2O4 cathode material for high-power Li-ion batteries. Trans Nonferrous Met Soc China. 2014;24:1414–24.

    Article  CAS  Google Scholar 

  20. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Flynn J, Wall L. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  23. Kissinger H. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  25. Coats A, Redfern J. Kinetic parameters from thermogravimetric data. J Nat. 1964;201:68–9.

    Article  CAS  Google Scholar 

  26. Khachani M, Hamidi A, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4·2H2O. Thermochim Acta. 2015;610:29–36.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  28. Senum I, Yang T. Rational approximations of the integral of the Arrhenius equation. J Therm Anal Calorim. 1977;11:445–7.

    Article  Google Scholar 

  29. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solidstate reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  30. Jankovic B, Adnadevic B, Jankovic J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel: thermogravimetric analysis. Thermochim Acta. 2007;452:106–15.

    Article  CAS  Google Scholar 

  31. Jiang HY, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  32. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  Google Scholar 

  33. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  34. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107–16.

    Article  CAS  Google Scholar 

  35. Ioitescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim. 2007;88:121–5.

    Article  CAS  Google Scholar 

  36. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review. Materials. 2014;7:2833–81.

    Article  Google Scholar 

  37. Khawam A, Flanagan D. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  38. Lihua H, Xuheng L, Zhongwei Z. Non-isothermal kinetics study on synthesis of LiFePO4 via carbothermal reduction method. Thermochim Acta. 2013;566:298–304.

    Article  Google Scholar 

  39. Boonchom B, Danvirutai C. Synthesis of MnNiP2O7 and nonisothermal decomposition kinetics of a new binary Mn0.5Ni0.5HPO4·H2O precursor obtained from a rapid coprecipitation at ambient temperature. Ind Eng Chem Res. 2008;47:5976–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Development and Promotion in Science and Technology Talents Project (DPST), and Material Chemistry Research Center, Department of Chemistry, Faculty of Science and Center of Excellence for Innovation Chemistry, Faculty of Science, Khon Kaen University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pittayagorn Noisong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suekkhayad, A., Noisong, P. & Danvirutai, C. Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2·H2O precursor. J Therm Anal Calorim 129, 123–134 (2017). https://doi.org/10.1007/s10973-017-6156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6156-0

Keywords

Navigation