Skip to main content
Log in

Thermal decomposition of CL-20 via a self-modified dynamic vacuum stability test

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) is examined via a self-modified dynamic vacuum stability test at temperature intervals of 130–170 °C. The p versus t curves indicate the multistep thermal decomposition of CL-20 and its autocatalytic behavior. The reaction rate constant k is 3.07 × 10−8, 9.61 × 10−8, 27.25 × 10−8, 133.31 × 10−8, and 387.94 × 10−8 s−1 at 130, 140, 150, 160, and 170 °C, respectively. The polymorphic transformation of CL-20 and certain products may affect kinetic output. The activation energy is 182.5 kJ mol−1, which shows good agreement with previously published results. The storage life of CL-20 at 50, 70, 90, 110, and 130 °C are estimated using the Semenov equation. At 130 °C, the storage life of CL-20 is extrapolated to 18.14 h, 8.20, 21.22, and 27.30 days, while taking the reaction extents of 1, 2, 3, and 4%, respectively, as the end points of life. These values correspond to the values obtained in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bayat Y, Zeynali V. Preparation and characterization of nano-CL-20 explosive. J Energ Mater. 2011;29(4):281–91.

    Article  CAS  Google Scholar 

  2. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech. 1997;22:249–55.

    Article  CAS  Google Scholar 

  3. Ou YX, Meng Z, Liu JQ. Review of the development of application technologies of CL-20. Chem Ind Eng Prog. 2007;26(12):1690–4.

    CAS  Google Scholar 

  4. Yang ZJ, Ding L, Wu P, Liu YG, Nie FD, Huang FL. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem Eng J. 2015;268:60–6.

    Article  CAS  Google Scholar 

  5. Yan QL, Zeman S, Elbeih A. Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562:56–64.

    Article  CAS  Google Scholar 

  6. Wan XZ, Ou YX, Chen BR, Feng CG. Determination of thermal stabilities of CL-20 and HMX using accelerating rate calorimeter (ARC). In: Proceeding 3rd Beijing international symposis on pyrotechnics and explosives; 1995.

  7. Dong LM, Li XD, Yang RJ. Thermal decomposition kinetics of hexanitrohexaazaisowurtzitane by mass spectrometry. Acta Phys-Chim Sin. 2008;24(6):997–1001.

    CAS  Google Scholar 

  8. Turcotte R, Vachon M, Kwok QS, Wang R, Jones DE. Thermal study of HNIW (CL-20). Thermochim Acta. 2005;433(1):105–15.

    Article  CAS  Google Scholar 

  9. Xiang M, Jiao QJ, Zhu YL, Yu JY, Chen LP. Thermal study of HNIW(CL-20) and mixtures containing aluminum powder. J Therm Anal Calorim. 2014;116(3):1159–63.

    Article  CAS  Google Scholar 

  10. Zhang LJ, He SR, Heng SY, Shao YH, Wang L. Thermal decomposition kinetics and estimation of storage life of DTHL explosive. Chin J Explos Propellants. 2010;33(3):47–50.

    Google Scholar 

  11. Zeman S, Elbeih A, Yan QL. Notes on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in the C4 matrix. J Therm Anal Calorim. 2013;112(3):1433–7.

    Article  CAS  Google Scholar 

  12. Liu R, Zhang TL, Yang L, Zhou ZN. Dynamic pressure thermal analysis of double-base propellants containing RDX. Cent Eur J Chem. 2014;12(6):672–7.

    Article  CAS  Google Scholar 

  13. Sinditskii VP, Vu MC, Sheremetev AB, Alexandrova NS. Study on thermal decomposition and combustion of insensitive explosive 3,3′-diamino-4,4′-azofurazan (DAAzF). Thermochim Acta. 2008;473(1–2):25–31.

    Article  CAS  Google Scholar 

  14. Benchabane M. The discontinuous vacuum stability test (DVST). J Energ Mater. 1993;11(2):89–99.

    Article  CAS  Google Scholar 

  15. Egorshev VY, Sinditskii VP, Smirnov SP. A comparative study on two explosive acetone peroxides. Thermochim Acta. 2013;574:154–61.

    Article  CAS  Google Scholar 

  16. Kučera V, Vetlický B. Investigation of the decomposition processes in single—base propellants under vacuum using a minicomputer—controlled automated apparatus. Propellants, Explos, Pyrotech. 1985;10(3):65–8.

    Article  Google Scholar 

  17. Chovancová M, Zeman S. Study of initiation reactivity of some plastic explosives by vacuum stability test and non-isothermal differential thermal analysis. Thermochim Acta. 2007;460(1–2):67–76.

    Article  Google Scholar 

  18. He SR, Zhang LJ, Heng SY, Liu ZR, Shi ZH. Study on thermal decomposition kinetics of hexanitrohexaazaisowurtzitane by gasometric method. Chin J Energ Mater. 2007;15(5):515.

    CAS  Google Scholar 

  19. Liu R, Yu WF, Zhang TL, Yang L, Zhou ZN. Nanoscale effect on thermal decomposition kinetics of organic particles: dynamic vacuum stability test of 1,3,5-triamino-2,4,6-trinitrobenzene. Phys Chem Chem Phys. 2013;15(20):7889–95.

    Article  CAS  Google Scholar 

  20. Liu R, Zhang TL, Yang L, Zhou ZN, Hu XC. Research on thermal decomposition of trinitrophloroglucinol salts by DSC, TG and DVST. Cent Eur J Chem. 2013;11(5):774–81.

    CAS  Google Scholar 

  21. Liu R, Zhou ZN, Yin YL, Yang L, Zhang TL. Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20. Thermochim Acta. 2012;537:13–9.

    Article  CAS  Google Scholar 

  22. Lűbbecke S, Bohn M, Pfeil A, Krause H. Thermal behavior and stability of HNIW (CL-20). In: 29th International Annual Conference of ICT, Karlsruhe; 1998.

  23. Isayev O, Gorb L, Qasim M, Leszczynski J. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B. 2008;112(35):11005–13.

    Article  CAS  Google Scholar 

  24. Patil D, Brill T. Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane. Combust Flame. 1991;87(2):145–51.

    Article  CAS  Google Scholar 

  25. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  26. Xu XJ, Zhu WH, Xiao HM. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J Phys Chem B. 2007;111(8):2090–7.

    Article  CAS  Google Scholar 

  27. Foltz MF, Coon CL, Garcia F, Nichols AL. The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part II. Propellants, Explos, Pyrotech. 1994;19(3):133–44.

    Article  CAS  Google Scholar 

  28. Ou YX, Jia HP, Chen BR, Xu YJ, Chen JT, Zheng FP. Research progress of hexanitrohexaazaisowurtzitane (3) Studies on polymorphs of hexanitrohexaazaisowurtzitane. Chin J Energ Mater. 1999;7(2):49–52.

    CAS  Google Scholar 

  29. Li J, Brill TB. Kinetics of solid polymorphic phase transitions of CL-20. Propellants Explos Pyrotech. 2007;32(4):326–30.

    Article  CAS  Google Scholar 

  30. Gump JC, Peiris SM. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J Appl Phys. 2008;104(8):083509.

    Article  Google Scholar 

  31. Zhang P, Xu JJ, Guo XY, Jiao QJ, Zhang JY. Effect of addictives on polymorphic transition of ε-CL-20 in castable systems. J Therm Anal Calorim. 2014;117(2):1001–8.

    Article  CAS  Google Scholar 

  32. Nedelko V, Chukanov N, Raevskii A, Korsounskii B, Larikova T, Kolesova O, et al. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Propellants Explos Pyrotech. 2000;25(5):255–9.

    Article  CAS  Google Scholar 

  33. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A. 2009;114(1):498–503.

    Article  Google Scholar 

  34. Yan QL, Zeman S, Sánchez Jiménez PE, Zhang TL, Pérez-Maqueda LA, Elbeih A. The mitigation effect of synthetic polymers on initiation reactivity of CL-20: Physical models and chemical pathways of thermolysis. J Phys Chem C. 2014;118(40):22881–95.

    Article  CAS  Google Scholar 

  35. Naik N, Gore G, Gandhe B, Sikder A. Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography–mass spectrometry (Py-GC/MS). J Hazard Mater. 2008;159(2):630–5.

    Article  CAS  Google Scholar 

  36. Korsounskii B, Nedel’ko V, Chukanov N, Larikova T, Volk F. Kinetics of thermal decomposition of hexanitrohexaazaisowurtzitane. Russ Chem Bull. 2000;49(5):812–8.

    Article  CAS  Google Scholar 

  37. Geetha M, Nair U, Sarwade D, Gore G, Asthana S, Singh H. Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim. 2003;73(3):913–22.

    Article  CAS  Google Scholar 

  38. Patil D, Brill T. Thermal decomposition of energetic materials 59. Characterization of the residue of hexanitrohexaazaisowurtzitane. Combust Flame. 1993;92(4):456–8.

    Article  CAS  Google Scholar 

  39. Chen SL, Liu JB, Wei SQ, Su Q. Study on Thermal decomposition kinetics of hexanitrohexaazaisowurtzitane. Chin J Energ Mater. 2002;10(1):46–8.

    CAS  Google Scholar 

  40. Bohn MA. Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL-20. Propellants Explos Pyrotech. 2002;27(3):125–35.

    Article  CAS  Google Scholar 

  41. Zhao FQ, Heng SY, Hu RZ, Hongxu G, Fang H. A study of kinetic behavious of the effective centralite/stabilizer consumption reaction of propellants using a multi-temperature artificial accelerated ageing test. J Hazard Mater. 2007;145(1):45–50.

    CAS  Google Scholar 

  42. Zeman S, Yan QL, Vlček M. Recent advances in the study of the initiation of energetic materials using characteristics of their thermal decompostion. Cent Eur J Energy Mater. 2014;11(2):173–89.

    CAS  Google Scholar 

  43. Zhu YL, Shan MX, Xiao ZX, Wang JS, Jiao QJ. Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR. Korean J Chem Eng. 2015;32(6):1164–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the China Academy of Engineering Physics Research Institute of Safety and Ammunition Research and Development Center (project no. RMC2015B01), Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional (project no. 14zdfk05) and Southwest University of Science and Technology Outstanding Youth Foundation (project no. 13zx9107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Jin, B., Peng, R. et al. Thermal decomposition of CL-20 via a self-modified dynamic vacuum stability test. J Therm Anal Calorim 128, 1833–1840 (2017). https://doi.org/10.1007/s10973-016-6016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6016-3

Keywords

Navigation