Skip to main content
Log in

Spectral, magnetic and thermal characterization of new Ni(II), Cu(II), Zn(II) and Cd(II) complexes with a bischelate Schiff base

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Schiff base N,N′-bis-(3-methoxy-salicyliden)-o-tolidine (H2L) derived from o-vanillin and 3,3`-dimethylbenzidine has been synthesized and structurally characterized. The crystal structure shows that the planar molecular units are arranged in sheets assembled through hydrogen bonds and π–π stacking interactions. New Ni(II), Cu(II), Zn(II), and Cd(II) complexes with H2L were synthesized and characterized by microanalytical, molar conductivities, ESI MS, IR, UV–Vis–NIR, and EPR spectra, magnetic data at room temperature as well as thermal analysis. IR data are in accord with divergent bischelate nature of ligand that coordinates as anion through azomethine nitrogen and phenolic oxygen. The electronic spectra correlated with magnetic susceptibility measurements, and EPR data indicate an octahedral stereochemistry for Ni(II) complex and a tetrahedral one for Cu(II) complex. Processes such as water elimination, thermolyses, and oxidative degradation of Schiff base were evidenced during thermal analysis. All these processes lead to the most stable metallic oxides as final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Radecka-Paryzek W, Patroniak V, Lisowski J. Metal complexes of polyaza and polyoxaaza Schiff base macrocycles. Coord Chem Rev. 2005;249:2156–75.

    Article  CAS  Google Scholar 

  2. Vigato PA, Tamburini S. Advances in acyclic compartmental ligands and related complexes. Coord Chem Rev. 2008;252:1871–995.

    Article  CAS  Google Scholar 

  3. Vigato PA, Peruzzo V, Tamburini S. Acyclic and cyclic compartmental ligands: recent results and perspectives. Coord Chem Rev. 2012;256:953–1114.

    Article  CAS  Google Scholar 

  4. Pradeepa CP, Das SK. Coordination and supramolecular aspects of the metal complexes of chiral N-salicyl-β-amino alcohol Schiff base ligands: towards understanding the roles of weak interactions in their catalytic reactions. Coord Chem Rev. 2013;257:1699–715.

    Article  Google Scholar 

  5. Rezaeivalaa M, Keypour H. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety—the first 50 years. Coord Chem Rev. 2014;280:203–53.

    Article  Google Scholar 

  6. Andruh M. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans. 2015;44:16633–53.

    Article  CAS  Google Scholar 

  7. Gavey EL, Pilkington M. Coordination complexes of 15-membered pentadentate aza, oxoaza and thiaaza Schiff base macrocycles “Old Complexes Offer New Attractions”. Coord Chem Rev. 2015;296:125–52.

    Article  CAS  Google Scholar 

  8. El-Bindary AA, El-Sonbati AZ, Diaba MA, Ghoneim MM, Serag LS. Polymeric complexes—LXII. Coordination chemistry of supramolecular Schiff base polymer complexes—a review. J Mol Liq. 2016;216:318–29.

    Article  CAS  Google Scholar 

  9. Gudasi KB, Patil SA, Vadavi RS, Shenoy RV. Crystal structure of 2-[2-hydroxy-3-methoxyphenyl]-3-[2-hydroxy-3-methoxybenzylamino]-1,2-dihydroquinazolin-4(3H)-one and the synthesis, spectral and thermal investigation of its transition metal complexes. Trans Met Chem. 2006;31:586–92.

    Article  CAS  Google Scholar 

  10. Şenol C, Hayvali Z, Dal H, Hökelek T. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes. J Mol Struct. 2011;997:53–9.

    Article  Google Scholar 

  11. Gülcan M, Sönmez M. Synthesis and characterization of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) transition metal complexes of tridentate schiff base derived from o-vanillin and N-aminopyrimidine-2-thione. Phosphorus Sulfur Silicon. 2011;186:1962–71.

    Article  Google Scholar 

  12. Keypour H, Shayesteh M, Golbedaghi R, Blackman AG, Cameron SA. Synthesis, spectral characterization, and structural investigation of mononuclear salen-type Cu(II) and Zn(II) complexes of a potentially octadentate N2O6 Schiff base ligand derived from binaphthol. Trans Met Chem. 2013;38:611–6.

    Article  CAS  Google Scholar 

  13. Saghatforoush LA, Aminkhani A, Chalabian F. Iron(III) Schiff base complexes with asymmetric tetradentate ligands: synthesis, spectroscopy, and antimicrobial properties. Trans Met Chem. 2009;34:899–904.

    Article  CAS  Google Scholar 

  14. Sheela CD, Anitha C, Tharmaraj P, Kodimunthri D. Synthesis, spectral characterization, and antimicrobial studies of metal complexes of the Schiff base derived from [4-amino-N-guanylbenzene sulfonamide] and salicylaldehyde. J Coord Chem. 2010;63:884–93.

    Article  CAS  Google Scholar 

  15. Zhou C, Gan L, Zhang Y, Zhang F, Wang G, Jin L, Geng R. Review on supermolecules as chemical drugs. Sci China B Chem. 2009;52:415–58.

    Article  CAS  Google Scholar 

  16. Bahaffi SO, Abdel Aziz AA, El-Naggar MM. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges. J Mol Struct. 2012;1020:188–96.

    Article  CAS  Google Scholar 

  17. Keypour H, Shayesteh M, Golbedaghi R, Chehregani A, Blackman AG. Synthesis, characterization, and X-ray crystal structures of metal complexes with new Schiff-base ligands and their antibacterial activities. J Coord Chem. 2012;65:1004–16.

    Article  CAS  Google Scholar 

  18. Abdel Aziz AA, Elbadawy HA. Spectral, electrochemical, thermal, DNA binding ability, antioxidant and antibacterial studies of novel Ru(III) Schiff base complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;124:404–15.

    Article  CAS  Google Scholar 

  19. Tabassum S, Amir S, Arjmand F, Pettinari C, Marchetti F, Masciocchi N, Lupidi G, Pettinari R. Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem. 2013;60:216–32.

    Article  CAS  Google Scholar 

  20. Guo Q, Li L, Dong J, Liu H, Xu T, Li J. Synthesis, crystal structure and interaction of l-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013;106:155–62.

    Article  CAS  Google Scholar 

  21. Jing B, Dong J, Wei Q, Xu T, Li L. An oxovanadium(IV) complex with o-vanillin-valine Schiff base and 1,10-phenanthroline ligands: synthesis, crystal structure and DNA interactions. Trans Met Chem. 2014;39:605–11.

    Article  CAS  Google Scholar 

  22. Tabassum S, Yadav S, Ahmad I. Heterobimetallic o-vanillin functionalized complexes: in vitro DNA binding validation, cleavage activity and molecular docking studies of CuII–Sn2IV analogs. J Organomet Chem. 2014;752:17–24.

    Article  CAS  Google Scholar 

  23. Zhu Y, Fan Y, Bi C, Zhang X, Zhang P, Yan X. Synthesis, characterization and antitumor studies of two copper(II) Schif Base complexes derived from glutatione and o-vanillin. Asian J Chem. 2015;27:47–50.

    Article  CAS  Google Scholar 

  24. Zhao H, Fan Y, Zhang D, Li X, Guo F, Bi C. Synthesis, characterization and electrochemical studies on the interaction mechanism of ternary La(III) complex with DNA. Asian J Chem. 2015;27:3567–70.

    Article  CAS  Google Scholar 

  25. Yernale NG, Udayagiri MD, Mruthyunjayaswamy BHM. Mononuclear metal (II) schiff base complexes derived from thiazole and o-vanillin moieties: synthesis, characterization, thermal behaviour and biological evaluation. Int J Pharm Sci Rev Res. 2015;31:190–7.

    CAS  Google Scholar 

  26. Ajbani JC, Smita Revankar D, Revanasiddappa M, Swamy V, Shankar S. Microwave synthesis, spectroscopic, thermal and biological studies of some transition metal complexes containing heterocyclic ligand. Int J Chem Sci. 2015;13:1673–92.

  27. Zaltariov M-F, Cazacu M, Avadanei M, Shova S, Balan M, Vornicu N, Vlad A, Dobrov A, Varganici C-D. Synthesis, characterization and antimicrobial activity of new Cu(II) and Zn(II) complexes with Schiff bases derived from trimethylsilyl-propyl-p-aminobenzoate. Polyhedron. 2015;100:121–31.

    Article  CAS  Google Scholar 

  28. Rogolino D, Carcelli M, Bacchi A, Compari C, Contardi L, Fisicaro E, Gatti A, Sechi M, Stevaert A, Naesens L. A versatile salicyl hydrazonic ligand and its metal complexes as antiviral agents. J Inorg Biochem. 2015;150:9–17.

    Article  CAS  Google Scholar 

  29. Subha L, Balakrishnan C, Thalamuthu S, Neelakantan MA. Mixed ligand Cu(II) complexes containing o-vanillin-Ltryptophan Schiff base and heterocyclic nitrogen bases: synthesis, structural characterization, and biological properties. J Coord Chem. 2015;68:1021–39.

    Article  CAS  Google Scholar 

  30. Jing B, Li L, Dong J, Li J, Xu T. Synthesis, crystal structure, and DNA interaction studies of a mixed-ligand copper(II) complex of 1,10-phenanthroline and a Schiff base derived from isoleucine. Trans Met Chem. 2011;36:565–71.

    Article  CAS  Google Scholar 

  31. Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev. 2008;252:1420–50.

    Article  CAS  Google Scholar 

  32. Yao L, Wang L, Zhang J, Tang N, Wu J. Ring opening polymerization of l-lactide by an electron-rich Schiff base zinc complex: an activity and kinetic study. J Mol Catal A: Chem. 2012;352:57–62.

    Article  CAS  Google Scholar 

  33. Zhu L, Liu D, Wu L, Feng W, Zhang X, Wu J, Fan D, Lü X, Lu R, Shi Q. A trinuclear [Zn3(L)2(OAc)2] complex based on the asymmetrical bis-Schiff-base ligand H2L for ring-opening copolymerization of CHO and MA. Inorg Chem Commun. 2013;37:182–5.

    Article  CAS  Google Scholar 

  34. Liu D-F, Wu L-Y, Feng W-X, Zhang X-M, Wu J, Zhu L-Q, Fan D-D, Lü X-Q, Shi Q. Ring-opening copolymerization of CHO and MA catalyzed by mononuclear [Zn(L2)(H2O)] or trinuclear [Zn3(L2)2(OAc)2] complex based on the asymmetrical bis-Schiff-base ligand precursor. J Mol Catal A: Chem. 2014;382:136–45.

    Article  CAS  Google Scholar 

  35. Das S, Bhunia S, Maity T, Koner S. Suzuki cross-coupling reaction over Pd-Schiff-base anchored mesoporous silica catalyst. J Mol Catal A: Chem. 2014;394:188–97.

    Article  CAS  Google Scholar 

  36. El Rez B, Costes J-P, Duhayon C, Vendier L, Sutter J-P. Structural determinations of carbamato-bridging ligands derived from atmospheric CO2 in 3d–4f complexes. Polyhedron. 2015;89:213–8.

    Article  Google Scholar 

  37. Das P, Linert W. Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev. 2016;311:1–23.

    Article  CAS  Google Scholar 

  38. Arslan F, Odabaşoğlu M, Ölmez H, Büyükgüngr O. Synthesis, crystal structure, spectral and thermal characterization of bis(o-vanillinato)-triethylenglycoldiiminecopper(II) and bis[(R)-(-)-hydroxymethylpropylimine o-vanillinato]copper(II). Polyhedron. 2009;28:2943–8.

    Article  CAS  Google Scholar 

  39. Yu Y-Y, Xian H-D, Liu J-F, Zhao G-L. Synthesis, characterization, crystal structure and antibacterial activities of transition metal(II) complexes of the Schiff Base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:1747–54.

    Article  CAS  Google Scholar 

  40. Wang Y-F, Liu J-F, Xian H-D, Zhao G-L. Synthesis, crystal structure, and kinetics of the thermal decomposition of the nickel(II) complex of the Schiff Base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:2582–93.

    Article  CAS  Google Scholar 

  41. Zhong G-Q, Zhong Q. Solid–solid synthesis, characterization, thermal decomposition and antibacterial activities of zinc(II) and nickel(II) complexes of glycine–vanillin Schiff base ligand. Green Chem Lett Rev. 2014;7:236–42.

    Article  Google Scholar 

  42. Zhong G-Q, Zhong W. One-step solid–solid synthesis, characterization and thermal decomposition of zinc(II) complexes of vanillin schiff base ligands. J Chem Pharm Res. 2014;6:272–7.

    CAS  Google Scholar 

  43. Ebrahimi HP, Hadi JS, Abdulnabi ZA, Bolandnazar Z. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;117:485–92.

    Article  CAS  Google Scholar 

  44. Ali AM, Ahmed AH, Mohamed TA, Mohamed BH. Chelates and corrosion inhibition of newly synthesized Schiff bases derived from o-tolidine. Trans Met Chem. 2007;32:461–7.

    Article  CAS  Google Scholar 

  45. Alan I, Kriza A, Badea M, Stanica N, Olar R. Synthesis and characterisation of Co(II), Ni(II), Zn(II) and Cd(II) complexes with 5-bromo-N, N-bis-(salicylidene)-o-tolidine. J Therm Anal Calorim. 2013;111:483–90.

    Article  CAS  Google Scholar 

  46. Alan I, Kriza A, Olar R, Stanica N, Badea M. Spectral, magnetic and thermal characterisation of new Co(II), Ni(II) and Cu(II) complexes with Schiff base 5-bromo-N, N-bis-(salicylidene)-o-tolidine. J Therm Anal Calorim. 2013;111:1163–71.

    Article  CAS  Google Scholar 

  47. Alan I, Kriza A, Dracea O, Stanica N. New complexes of Co(II), Ni(II) and Cu(II) with the Schiff base 2,2′-[(3,3′-dimethyl[1,1′-biphenyl]-4,4′-diylbis-(nitrilomethylidyne)]bis[6-methoxyphenol]. J Serb Chem Soc. 2013;78:947–57.

    Article  CAS  Google Scholar 

  48. Li C-H, Song X-Z, Jiang J-H, Gu H-W, Tao L-M, Yang P, Li X, Xiao S-X, Yao F-H, Liu W-Q, Xie J-Q, Peng M-N, Pan L, Wu X-B, Jiang C, Wang S, Xu M-F, Li Q-G. Synthesis, crystal structure and thermodynamic properties of a newpraseodymium Schiff-base complex. Thermochim Acta. 2014;581:118–22.

    Article  CAS  Google Scholar 

  49. Li C-H, Jiang J-H, Yang P, Tao L-M, Li X, Xiao S-X, Peng X, Tao X, Xie J-Q, Zhu Y, Xie M-A, Li Q-G. Preparation, structure, and thermochemical properties of a copper(II) Schiff-base complex. J Therm Anal Calorim. 2015;119:1285–92.

    Article  CAS  Google Scholar 

  50. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla M, Polidori G, Camalli M. Early finding of preferred orientation: a new method. J Appl Cryst. 1994;27:1045–50.

    Article  CAS  Google Scholar 

  51. Cromer DT, Waber JT. International tables for X-ray crystallography. Vol. IV (Table 2.2 A). Birmingham: The Kynoch Press; 1974.

  52. Ibers JA, Hamilton WC. Dispersion correction and crystal structure refinements. Acta Crystallogr. 1964;17:781–2.

    Article  Google Scholar 

  53. Creagh DC, McAuley WJ. International tables for crystallography. Vol C (Table 4.2.6.8). In: Wilson AJC, editor. Boston: Kluwer Academic Publishers; 1992.

  54. Creagh DC, Hubbell JH. International tables for crystallography, Vol C (Table 4.2.4.3). In: Wilson AJC, editor. Boston: Kluwer Academic Publishers; 1992.

  55. CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000–2010). Tokyo 196-8666, Japan.

  56. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2007;64:112–22.

    Article  Google Scholar 

  57. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  58. Cimpoesu F, Dahan F, Ladeira S, Ferbinteanu M, Costes J-P. Chiral crystallization of a heterodinuclear Ni–Ln series: comprehensive analysis of the magnetic properties. Inorg Chem. 2012;51:11279–93.

    Article  CAS  Google Scholar 

  59. Guo Y-N, Chen X-H, Xue S, Tang J. Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates. Inorg Chem. 2012;51:4035–42.

    Article  CAS  Google Scholar 

  60. Nayak S, Gamez P, Kozlevčar B, Pevec A, Roubeau O, Dehnen S, Reedijk J. Coordination compounds from the planar tridentate Schiff-base ligand 2-methoxy-6-((quinolin-8-ylimino)methyl)phenol (mqmpH) with several transition metal ions: use of [FeIII(mqmp)(CH3OH)Cl2] in the catalytic oxidation of alkanes and alkenes. Polyhedron. 2010;29:2291–6.

    Article  CAS  Google Scholar 

  61. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part B. Applications in coordination, organometallic, and bioinorganic chemistry. 6th ed. New Jersey: Wiley; 2009.

  62. Solomon EI, Lever ABP. Inorganic electronic structure and spectroscopy. Applications and case studies. New York: Wiley; 2006.

  63. Gispert JR. Coordination Chemistry. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  64. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

    Article  CAS  Google Scholar 

  65. El Metwally NM, Arafa R, El-Ayaan U. Molecular modeling, spectral, and biological studies of 4-formylpyridine-4 N-(2-pyridyl) thiosemicarbazone (HFPTS) and its Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II), Hg(II), and UO2(II) complexes. J Therm Anal Calorim. 2014;115:2357–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionela Alan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Supplementary material 2 (CIF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olar, R., Badea, M., Ferbinteanu, M. et al. Spectral, magnetic and thermal characterization of new Ni(II), Cu(II), Zn(II) and Cd(II) complexes with a bischelate Schiff base. J Therm Anal Calorim 127, 709–719 (2017). https://doi.org/10.1007/s10973-016-5433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5433-7

Keywords

Navigation