Skip to main content
Log in

Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: a review

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Schiff bases are organic compounds referred as privileged ligands that are synthesized from the condensation of a primary amine with a carbonyl group. They are regarded as an important class of organic compounds due to their chelating properties and ability to coordinate to a wide range of transition, lanthanide, and actinide ions in different oxidation states using their nitrogen and oxygen atoms to form stable complexes. Tremendous interest has been aroused to explore the potential applications of metal complexes of various Schiff bases in confronting the challenges facing mankind such as antimicrobial resistance and environmental pollution. There has been great interest in Schiff bases and their metal complexes because of their numerous applications in organic, bioinorganic, analytical, material science, and medicinal chemistry. The presence of the azomethine group in the Schiff bases and its ability to coordinate to various metal ions is essential for these applications. This paper covers a wide range of Schiff bases synthesized from the condensation reaction involving the carbonyl group of salicylidene-4-amioantipyrine and the amine group of various organic compounds and their metal complexes which were characterized based on their numerous unique physical, chemical, and spectral properties from which different structures have been proposed. The various information was collected from researches in journals indexed by Scopus, Google Scholar, PubMed published over the years. This review provides an insight into the metal complexes of Schiff bases derived from salicylidene-4-aminoatipyrine and its derivatives and the various research works explored on its biological and analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64

Similar content being viewed by others

Abbreviations

SOCl2 :

Thionyl chloride

PCl5 :

Phosphorus pentachloride

CH3COCl:

Acetyl chloride

LiOH:

Lithium hydroxide

NaBH4 :

Sodium borohydride

H2O2 :

Hydrogen peroxide

Fig:

Figure

UV–Vis:

Ultraviolet–visible

IR:

Infrared

FTIR:

Fourier transform infrared

NMR:

Nuclear magnetic resonance

XRD:

X-ray diffraction

DNA:

Deoxyribose nucleic acid

CT-DNA:

Calf thymus deoxyribose nucleic acid

References

  1. H. Schiff, Ann. Chem. Suppl. 3, 343–349 (1864)

    Google Scholar 

  2. D.D. Yin, Y.L. Jiang, L. Shan, Synthesis, characterisation of diorganotin(IV) Schiff base complexes and their invitro antitumor activity. Chin. J. Chem. 19(11), 1136–1140 (2001). https://doi.org/10.1002/cjoc.20010191122

    Article  CAS  Google Scholar 

  3. P. Piotr, B. Bogumit, Spectroscopic studies and PM3 semiempirical calculations of Schiff bases of gossypol with L-amino Acid Methyl Esters. Biopolymers 67(1), 61–69 (2002)

    Article  Google Scholar 

  4. R. Miao, L. Shuoliong, Y. Rudong, Y. Lan, Y. Wenbing, Synthesis and crystal structure of Schiff base pyrazolone. Indian J. Chem. 42A, 318–321 (2003)

    CAS  Google Scholar 

  5. R. Ramesh S. Maheswaran, Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J. Inorg. Biochem. 96,457–462 (2003) https://doi.org/10.1016/S0162-0134(03)00237-X

  6. E.E. Elemike, A.P. Oviawe, I.E. Otuokere, Potentiation of the antimicrobial activities of 4-benzylimino-2,3-dimethyl-1-phenylpyrazol-5-one by metal chelation. Research Journal of Chemical Science 1(8), 6–11 (2011)

    CAS  Google Scholar 

  7. N. Raman, S. Johnson Raja, J. Joseph, J. Dhaveethu Raja, Synthesis, spectral characterisation and DNA cleavage study of heterocyclic Schiff base metal complexes. Journal of the Chilean Chemical Society. https://doi.org/10.4067/S0717-97072007000200004

  8. N. Raman, A. Kulandaisamy, C. Thanagaraja, P. Manisankar, S. Viswanathan, C. Vedhi, Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Transition Metal Complexes 29(2), 129–135 (2004)

    Article  CAS  Google Scholar 

  9. N. Raman, R.S. Johnson, Synthesis and spectral characterisation of mixed ligand complexes derived from 2-chlorobenzaldehyde, 4-aminoantipyrine and 1,10-phenathroline .Asian J. Spectrosc. 11(1), 35- 41 (2007).

  10. R. K. Agarwal, P. Garg, H. Agarwal, S. Chandra, Synthesis, magneto-spectral and thermal studies of cobalt(II) and nickel(II) complexes of 4-[N-(4-dimethylaminobenzylidene)amino]antipyrine. Synthesis and Reactivity In Inorganic and Metal-Organic Chemistry, 27(2),251–268 (1997) 1080/00945719708000150

  11. L. Singh, N. Tyagi, N.P. Dhaka, S.K. Sindhu, Synthesis, spectral and thermal studies of some lanthanide(III) complexes of 4-[-N-(benzalidene)amino]antipyrine thiosemicarbazones. Asian J. Chem. 11, 503–508 (1999)

    CAS  Google Scholar 

  12. Z. Beigi, A.H. Kianfar, H. Farrokhpour, M. Roushani, M. H. Azarian, W.A.K. Mahmood, Synthesis, characterization and spectroscopic studies of nickel (II) complexes with some tridentate ONN donor Schiff bases and their electrocatalytic application for oxidation of methanol. Journal of Molecular Liquids. 249, 117–125 (2018) https://doi.org/10.1016/j.molliq.2017.10.131

  13. Z. Beigi, A.H. Kianfar, G. Mohammadnezhad, H. Görls, W. Plass, Palladium (II) complexes with diaminomaleonitrile-based Schiff base ligands: Synthesis, characterization and application as Suzuki-Miyaura coupling catalysts. Polyhedron. 134, 65–72 (2017) https://doi.org/10.1016/j.poly.2017.06.009

  14. R. C. Maurya, D.D. Mishra, P.K. Trivedi, S. Mukherjee, P.K. Shrivastava, Synthesis and characterisation of some novel penta-coordinated mixed-ligand derivatives of Zinc(II) Bis(acetylacetone) and Bis(acetoacetanilide) chelates with 2,3-pyrazoline-5-one.Synth. React. Inorg. Met. Org. Chem., 22(4), 403–414 (1992) https://doi.org/10.1080/15533179208020474

  15. J.R. Chorpra, D. Uppal, U.S. Arrora, S.K. Gupta, Synthesis and spectral studies of Cu(II) complexes of 4[N-(2-hydroxy-1-naphthalidene)amino]antipyrine. Asian J. Chem 12, 1277–1281 (2000)

    Google Scholar 

  16. M.L.H. Nair, C.P. Prabhakaran, Synthesis and spectral studies of oxomolybdenium (V) and dioxomolybdenum(VI) complexes of 1,2-dihydrro-1,5-dimethyl-2-phenyl-4-(2,4-dihydroxyphenylazo)-3H-pyrazol-3-one. Indian J. Chem. 39A, 989–992 (2000)

    CAS  Google Scholar 

  17. A.M. Donia, F.A. El-saied, complexes of manganese (II), cobalt (II) and nickel (II) with the keto form of some antipyrine Schiff base derivatives. Polyhedron,7, 2149–2153 (1988) https://doi.org/10.1016/S0277-5387(00)81794-5

  18. W. Al-Zoubi, Solvent extraction of metal ions by use of Schiff bases. Journal of Coordination Chemistry, 66(13), 2264–2289.(2013) https://doi.org/10.1080/00958972.2013.803536

  19. S. Chandra, D. Jain, A.K. Sharma, Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt (II), nickel (II) and copper (II) metal ions. Synthesis, spectroscopic and antimicrobial studies, Molecules 14(1), 174–190 (2009)

    CAS  PubMed  Google Scholar 

  20. N. Raman, S. Sobha, A. Thamaraichelvan, A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 78(2), 888–898 (2011). https://doi.org/10.1016/j.saa.2010.12.056

    Article  CAS  PubMed  Google Scholar 

  21. S. Akhter, H. Ulzaman, S. Mir, A.M. Dar, S. Shrivastava, Synthesis of Schiff base metal complexes: A concise review. Eur. Chem. Bull. 6(10), 475–483 (2017). https://doi.org/10.1016/0022-1902(76)80197-2

    Article  CAS  Google Scholar 

  22. N. Raman, S. Johnson Raja, A. Sakthivel, Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives-a review. Journal of Coordination Chemistry, 62(5),691–709(2009) https://doi.org/10.1080/00958970802326179

  23. A. Sakthivel, K. Jeyasubramanian, B. Thangagiri, J. Dhaveethu Raja, Recent advances in Schiff base metal complexes derived from 4-aminoantipyrine derivatives and their potential applications. Journal of Molecular Structure, 1222(15), 128885(2020) https://doi.org/10.1016/j.molstruc.

  24. E. Mosoarca, T. Ramona, S. Ludovic, C. Otilia, L. Wolfgang, Recent developments in the coordination chemistry of antipyrine and antipyrine derivatives. Rev. Inorg. Chem. 28(1), 1–34 (2008). https://doi.org/10.1515/REVIC.2008.28.1.1

    Article  CAS  Google Scholar 

  25. N.T. Mahdu, P.K. Radhakrishnan, M. Grunert, P. Weinberger, W. Linert, Antipyrine and its derivatives with first row transition metals. Rev. Inorg. Chem. 23(1), 1–24 (2003). https://doi.org/10.1515/REVIC.2003.23.1.1

    Article  Google Scholar 

  26. N. M. Aljamali, S.A. Aati, H. Obaid, F.A. Wannas, A literature review on antipyrine in chemistry fields. American International Journal of Sciences and Engineering Research, 2(1), 9–21 (2019) https://doi.org/10.46545/aijser.v2i1.41

  27. R.K. Agarwal, S. Prasad, V. Chand, A review of high coordination compounds of dioxouranium (VI) derived from Schiff bases of 4-aminoantipyrine. Int. J. Chem. 1(4), 576–597 (2012)

    CAS  Google Scholar 

  28. P. Deshmukh, P.K. Soni, A. Kankoriya, A.K. Halve, R. Dixit, 4-Aminoantipyrine: A significant tool for the synthesis of biological active Schiff bases and metal complexes. International Journal of Pharmacy Science Review Research. 34(1), 162–170 (2015)

    CAS  Google Scholar 

  29. C. Varadaraju, G. Tamilselvan, I.V.M.V. Enoch, P.M. Selvakumar, Phenol sensing studies by 4-aminoantipyrine method - A review. Organic and Medicinal Chemistry International Journal, 5(2), 1–7 (2018) https://doi.org/10.19080/OMCIJ.2008.05.555657

  30. A.M. Aljeboree, A. F. Alkaim, F.H. Abdulrazzak, A.S. Abbas, A.N. Alshirifi, Spectrophotometric determination of pharmaceutical by oxidative coupling of 4-aminoantipyrine: A short review. Journal of Engineering and Applied Sciences, 14(2) (2019) 10.36478/ jeasci.2019.5561.5569

  31. T. Radhakrishnan, P.T. Joseph, C.P. Prabhakaran, Copper (II) complexes of salicylal-4-aminoantipyrine and 2-hydroxynaphthal-4-aminoantipyrine. J. Inorg. Nucl. Chem. 38(12), 2217–2220 (1976). https://doi.org/10.1016/0022-1902(76)80197-2

    Article  CAS  Google Scholar 

  32. C. P. Prabhakaran, T. Radhakrishnan, Copper (II) complexes of 3,5-dimethylsalicylal-4-aminoantipyrine. Indian Journal of Chemistry, 24(A) 427–428 (1985)

  33. G. Shankar, R.R. Premkumar, S.K. Ramalingam, 4-aminoantipyrine Schiff base complexes of lanthanide and uranyl ions.Polyhedron, 5(4), 991–994 (1986) https://doi.org/10.1016/S0277-5387(00)80140-0

  34. A.M. Donia, E.Z.M. Ebeid, Thermochromism in Ni(II) complexes with Schiff base derivatives of 4-aminoantipyrine. Thermochimica Acta. 131,1–6 (1988) https://doi.org/10.1016/0040-6031(88)80051-0

  35. B. Kuncheria, P. Indrasenan, Thorium (IV) nitrate complexes with some Schiff base of 4-aminoantipyrine and certain carbonyl compounds. Polyhedron 7(2), 143–146 (1988). https://doi.org/10.1016/S0277-5387(00)80459-3

    Article  CAS  Google Scholar 

  36. S. Abdul Samath, N. Raman, K. Jeyasubramanian, S. Thambidurai, S.K. Ramalingam, Reactions of uranyl (IV) nitrate with terfunctional 4-aminoantipyrine Schiff bases in neutral and alkaline pH. Asian Journal of Chemistry, 5(3), 684 (1993)

  37. F.A. El-Saied, M.I. Ayad, S.A. Aly, Tin (IV), titanium (IV) and hafnium (IV) complexes of some aromatic Schiff bases derived from 4-aminoantipyrine. Transition Metal Chemistry. 18, 279–282 (1993) https://doi.org/10.1007/BF00207946

  38. R. K. Agarwal, K. Arora, P. Dutt, Studies on thorium(IV) and dioxouranium(VI) complexes of Schiff bases derived from 4-aminoantipyrine. Synthesis and Reactivity in Inorganic and Metal Organic Chemistry, 24(2), 301–324 (1994) ) https://doi.org/10.1080/00945719408000112

  39. A. El-Dissouky, A.K. Shehata, G. El-Mahdey, Synthesis and characterization of oxovanadium (IV) and dichlorovanadium (IV) complexes of biologically active 4-aminoantipyrine derivatives. Polyhedron 16(7), 1247–1253 (1997). https://doi.org/10.1016/S0277-5387(96)00173-8

    Article  CAS  Google Scholar 

  40. R. Y. Li, F.L. Bei, W. X. Ma, X.J. Yang Xu-Jie, X.Y. Xu , Lu Lingyi, One step synthesis of N-salicylidene -4-aminoantipyrine by the solid phase reaction at room temperature. Chinese Journal of Chemistry, 23(8), 846–849 (2003)

  41. M.M. Mashaly, Z.H. Abd-Elwahab, A.A. Faheim, Preparation, spectral characterization and antimicrobial activities of Schiff base complexes derived from 4-aminoantipyrine. Mixed ligand complexes with 2-aminopyridine, 8-hydroxyquinoline and oxalic acid and their pyrolytical products. Journal of Chinese Chemical Society, 51(5A), 901–915 (2004) 10.1002 /jccs.200400135

  42. Z. H. Abd El-Wahab, M.M. Mashaly, A.A. Faheim, Synthesis and characterisation of cobalt (II), cerium (III) and dioxouranium (VI) complexes of 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazolin-5-one. Mixed ligand complexes, pyrolytic products and biological activities. Chemical Papers, 59(1), 25–36 (2005)

  43. A.A.S. Al-hamdani, Synthesis and characterisation of Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes with o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on. Journal Um-Salama for Science 2(2078–8665), 395–602 (2005)

    Google Scholar 

  44. K.C. Potgieter, T.I.A. Gerber, P. Mayer, Coordination of tridentate Schiff base derivatives of 4-aminoantipyrine to rhenium (v). S. Afr. J. Chem. 64, 179–184 (2011)

    CAS  Google Scholar 

  45. P. A. Fatullayeva, Medjidov, A.M. Maharramov, A.V. Gurbanov, R.K. Askerov, K.Q. Rahimov, M.N. Kopylovich, K. T. Mahmudov, A.J.L. Pombeiro, New cobalt (II) and nickel (II) complexes for 2-hydroxy-benzyl derivative of 4-aminoantipyrine. Polyhedron. 44,72–76(2012) https://doi.org/10.1016/j.poly.2012.06.061

  46. M. Tümer, H. Köksal, S. Serine, Synthesis, characterization and thermal studies of mononuclear and binuclear complexes of copper(II) with Schiff bases derived from 1-phenyl-2,3-dimethyl-4-amino-5-pyrazolone. Synthesis Reaction and Inorganic Metal Organic Chemistry 26(9), 1589–1598 (1996). https://doi.org/10.1080/00945719608005149

    Article  Google Scholar 

  47. M. Selvakumar, E. Suresh, P.S. Subramanian, Synthesis, spectral, characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu(II) complexes and their molecular association. Polyhedron 26(4), 749–756 (2007). https://doi.org/10.1016/j.poly.2006.09.004

    Article  CAS  Google Scholar 

  48. A. Sheela, M.S. Pramila Gladis, M.L. Harikumaran Nair, Synthesis, spectral, thermal, electrochemical and antibacterial studies of oxomolybdenum (V) and dioxomolybdenum (VI) complexes with 2,3-dimethyl-1-phenyl-4-(5-chloro-2-hydroxybenzylideneamino)pyrazol-5-one. Journal of the Indian Chemical Society, 84(4), 329–332 (2007)

  49. I. Chakraborti, Synthesis, magneto-spectral and thermal studies of cobalt (II) complexes of 4-[N-(benzalidene)amino]antipyrine thiosemicarbazone and 4-[N-(2/-hydroxybenzalidene)amino] antipyrine thiosemicarbazone. Asian J. Chem. 15(3), 1795–1802 (2003)

    CAS  Google Scholar 

  50. S.A.S. Alazawi, A.A.S. Al-hamdani, Synthesis and characterisation of mixed ligand complexes of 8-hydroxyquinoline and Schiff base with some metal ions. Baghdad Sci. J. 4(1), 102–109 (2007)

    Article  Google Scholar 

  51. A.A.S. Al-hamdani, Synthesis and characterisation of VO(II), Cr(III), Mn(II), Fe(II), Zn(II), Cd(II), Hg(II) and UO2(VI) complexes with ligands containing (ONO) and (ON) donor set atoms. J. Baghdad for Science, 5(2), 285–296 (2008) https://doi.org/10.21123/bsj.5.2.285-296

  52. N. Raman, S. Parameswari, Synthesis and spectral characterisation of transition metal complexes derived from 4-aminoantipyrine, salicylaldehyde and 4,4/-diaminodiphenylmethane. Asian J. Spectrosc. 12(1), 39–47 (2008)

    CAS  Google Scholar 

  53. A.A.S. Al-hamdani, J.A. Jarad, S.A. Al-Atrakchi, Synthesis and spectral analysis of VO(II), Cr(III), Zn(II), Cd(II), Hg(II) and UO2(II) complexes with mixed ligands of bipyridyl and novel Schiff base. Journal of Research Diyala Humanity 36, 287–301 (2009)

    Google Scholar 

  54. S.A. Shaker, Y. F. Abdul Aziz, A.A. Salleh, Synthesis and characterisation of mixed ligand complexes of 8-hydroxyquinoline and o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on with Fe(II), Co(II), Ni(II) and Cu(II) ions . European Journal of Scientific Research, 33(4),702–709 (2009)

  55. S.H. Kadhim, I.Q. Abd-Alla, T.J. Hashim, Synthesis and characterisation study of Co(II), Ni(II) and Cu(II) complexes of new Schiff base derived from 4-aminoantipyrine. Int. J. Chem. Sci. 15(1), 107–114 (2017)

    Google Scholar 

  56. A.M. Farghaly, A.A. Hazza, M.S. Abouzeit, F.M. Sharabi, Non-steroidal anti-inflammatory agents,4-[1-(3,5-disubstituted-2-thio-thio-1,3,5-perhydrotriazinyl)]-2,3-dimethyl-1-phenyl-5-pyrazolones. Pharmazie 35(10), 596–598 (1980)

    CAS  PubMed  Google Scholar 

  57. H. Torayama, T. Nishide, H. Asada, M. Fujiwara, T. Matsushita, Preparation and characterisation of novel cyclic tetranuclear manganese (III) complexes: Mn///4(X-salmphen)6 ( X-salmphenH2 = N, N-di-substituted-salicylidene-1,3-diaminobenzene (X=H, 5-Br) Polyhedron, 16(21), 3787–3794 (1997) https://doi.org/10.1016/S0277-5387(97)00148-4

  58. M.E. Hossain, M.N. Alam, J. Begum, A.M. Akbar Ali, M. Nazimuddin, F.E. Smith, R. C. Hynes. The preparation, characterization, crystal structure and biological activities of some copper (II) complexes of the 2-benzoylpyridine Schiff bases of S-methyl and S-benzyldithiocarbazate, Inorg Chim Acta , 249(2), 207–213 (1996) https://doi.org/10.1016/0020-1693(96)05098-0

  59. J. Joseph, K. Nagashri, G. Ayisha, B. Rani, Synthesis, characterization and antimicrobial activities of copper complexes derived from 4-aminoantipyrine derivatives. Journal of Saudi Chemical Society, 17, 285–294 (2013) https://doi.org/10.1016/j.jscs.2011.04.007

  60. T. Rosu, S. Pasculesu, V. Lazar, C. Chifiriuc, R. Cernat, Copper (II) complexes with ligands derived from 4-amino-2,3-dimethyl-I-phenyl-3-Pyrazolin-5-one. Synthesis and biological activity. Molecules 11(11), 904–914 (2006). https://doi.org/10.3390/11110904

    Article  CAS  PubMed  Google Scholar 

  61. T. Rosu, M. Negoiu, S. Pasculescu, E. Pahontu, D. Poirier, A. Gulea, Metal-based biologically active agents: Synthesis, characterization, antibacterial and antileukemia activity evaluation of Cu(II), V(IV) and Ni(II) complexes with antipyrine-derived compounds. Eur. J. Med. Chem. 45(2), 774–781 (2010). https://doi.org/10.1016/j.ejmech.2009.10.034

    Article  CAS  PubMed  Google Scholar 

  62. O.H.S Al-Obaidi, Binuclear Cu(II) and Co(II) complexes of ONO tridentate heterocyclic Schiff base derived from salicylaldehyde with 4-aminoantipyrine. Bioinorganic Chemistry and Applications,ID 601879, 1–6 (2012) https://doi.org/10.1155/2012/601879

  63. J. Devi, S. Kumar, S. Asijaa, R. Malhotra, Synthetic, spectroscopic and biological aspects of triorganosilicon(IV) complexes tridentate Schiff bases. Phosphorus, Sulfur and Silicon and the Related Elements, 187(11),409–1417(2012) https://doi.org/10.1080/10426507.2012.686546

  64. A. A. Maihub, S.M. Sofian, A.A. Awim, A.K. Belaid, S.M. Bensaber, A. Hermann, A M. Gbaj, Antimicrobial activity of some pyrazolidine-3-one Schiff base derivatives and their complexes with selected metal ions. Journal of Pharmacology and Clinical Trials, 55–64 (2018) https://doi.org/10.29199/jpct.101019

  65. B. Anupama, M. Sunitha, C. Gyana Kumari, Synthesis, Characterisation, DNA binding and antimicrobial activity of copper (II) complexes with 4-aminoantipyrine Schiff bases. Asian Journal of Research in Chemistry, 4(10), 1529–1535 (2011)

  66. B. Anupama, C.G. Kumari, Synthesis, characterization, DNA binding and antimicrobial activity of 4-aminoantipyrine Schiff base metal complexes. Research Journal Pharmacy Biological Chemistry Science 2(4), 140–159 (2011)

    CAS  Google Scholar 

  67. T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, A. Gulea, Some new Cu(II) complexes containing an ON donor Schiff base: synthesis, characterisation and ON donor Schiff base: synthesis, characterization and antibacterial activity. Polyhedron 30(1), 154–162 (2011). https://doi.org/10.1016/j.poly.2010.10.001

    Article  CAS  Google Scholar 

  68. B. Anupama, M. Padmaja, C. Gyana Kumari, Synthesis, characterization, biological activity and DNA binding studies of metal complexes with 4-aminoantipyrine Schiff base ligand. E-Journal of Chemistry, 9(1), 389–400(2012) https://doi.org/10.1155/2012/291850

  69. B. Anupama, K. Mounika, M. Sunitha, C. Gyana Kumari, C. Venkata Ramanach Treddy, Synthesis, characterization and biological activity of metal complexes with 4-aminoantipyrine Schiff bases of 5-chlorosalicylaldehyde and 3-ethoxysalicylaldehyde. Journal of the Indian Chemical Society, 89(6), 735–743 (2012)

  70. J.J. Jadeja, M.B. Gondaliya, D.M. Mokariya, M. Shah, Synthesis, spectral characterization and biological activity studies of Schiff’s base of 1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-4-amine and its metal complexes. World Scientific News 47(2), 123–150 (2016)

    CAS  Google Scholar 

  71. N. Raman, A. Kulandaisamy, K. Jeyasubramanian, Synthesis, spectroscopic, characterization, redox and biological screening studies of some Schiff base transition metal (II) complexes derived from salicylidene-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Synthesis Reaction Inorganic Metal Organic Chemistry 31(7), 1249–1270 (2001). https://doi.org/10.1081/SIM-100106862

    Article  CAS  Google Scholar 

  72. N. Raman, C. Thangaraja, S. Johnson Raja, Synthesis, spectral characterization, redox and antimicrobial activity of Schiff base transition metal (II) complexes derived from 4-aminoantipyrine and 3-salicylideneacetylacetone. Central European Journal of Chemistry, 3(3), 537–555. (2005) https://doi.org/10.2478/BF02479281

  73. S. Prasad, R.K. Agarwal, Cobalt (II) complexes of various thiosemicarbazones of 4-aminoantipyrine: Synthesis, spectral, thermal and antimicrobial studies. Transition Met. Chem. 32(2), 143–149 (2007). https://doi.org/10.1007/S11243-006-0119-9

    Article  CAS  Google Scholar 

  74. T. Kavitha, A. Kulandaisamy, P. Thillaiarasu, Synthesis, characterization, redox and biological screening studies of copper (II), nickel (II), cobalt (II), zinc (II) and vanadium (IV) complexes derived from1-phenyl-2,3-dimethyl-4-imino-(2-hydroxybenzylidene)-pyrazol-5-(α-imino)-indole-3-propionic acid. Int. J. ChemTech Res. 4(4), 1571–1581 (2012)

    Google Scholar 

  75. E.M. Pahontu, Transition metal complexes with antipyrine-derived Schiff bases: synthesis and antibacterial activity. Descriptive Inorganic Chemistry Researches of metal compounds, 65–92 (2017) ) https://doi.org/10.5772/67584

  76. G. Raja, R.J. Butcher, C. Jayabalakrishnan, Studies on synthesis, characterisation, DNA interaction and cytotoxicity of ruthenium (II) Schiff base complexes. Spectrochimica Acta Part A: Molecular and Bimolecular Spectroscopy, 94, 210–215(2012) https://doi.org/10.1016/J.saa.2012.03.035

  77. C. Anitha, C.D. Sheela, P. Tharmaraj, S. Samantha, Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (I-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-[(4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 493–500 (2012) https://doi.org/10.1016/j.saa.2012.05.053

  78. B. Anupama, C.G. Gyana Kumari, Cobalt (II) complexes of ONO donor Schiff bases and N donor ligand: Synthesis, characterization, antimicrobial and DNA binding study. International Journal of Research in Chemistry and Environment, 3(2), 172–180(2013)

  79. B. Anupama, M. Sunita, D. Leela Shiva, B. Ushaiah, C. Gyana Kumari, Synthesis, spectral, characterization, DNA binding studies and antimicrobial activity of Co(II), Ni(II), Zn(II), Fe(II) and VO(IV) complexes with 4-aminoantipyrine Schiff base of ortho-vanillin. Journal of Fluorescence, 24(4),1067–1076 (2014) https://doi.org/10.1007/s10895-014-1386-z

  80. R. Paulpandiyan, N. Raman, The binding mode of pyrazolone derived copper (II), cobalt (II), nickel (II) and zinc (II) Schiff base coordination compounds with calf-thymus DNA. Journal of Advanced Applied Scientific Research 1(9), 78–84 (2017)

    CAS  Google Scholar 

  81. N. Raman. , S. Thalamuthu, J. Dhaveethuraja, M.A. Neelakandan, S. Banerjee DNA cleavage and antimicrobial studies on transition metal (II) complexes of 4-aminoantipyrine derivative. Journal of the Chilean Chemical Society,53(1),1439–1443 (2008) https://doi.org/10.4067/S0717-97072008000100025

  82. N. Raman, S. Sobha, Inspired research in the DNA binding ability of 4-aminoantipyrine derived mixed ligand complexes. Inorganic Chemistry Communications, 17, 120–123 (2012) https://doi.org/10.1016/j.inoche.2011.12.029

  83. N. Raman, S. Sobha, N. Selvaganapathy, R. Mahalakshmi, DNA binding mode of novel tetradentate amino and based 2-hydroxybenzylidene-4-aminoantipyrine complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96,698–708. (2012) https://doi.org/10.1016/j.saa.2012.07.051

  84. N. Raman, S. Sobha, Exploring the DNA binding mode of transition metal-based biologically active compounds. Spectrochimica Acta Part A : Molecular and Bimolecular Spectroscopy 85(1), 223–234 (2012). https://doi.org/10.1016/j.saa.2011.09.065

    Article  CAS  Google Scholar 

  85. D. Shiva Leela, B. Ushaiah, G. Anupama, M. Sunitha, C. Gyana Kumari, Synthesis, characterization, antimicrobial, DNA binding and cleavage studies of mixed ligand Cu(II), Co(II) complexes. Journal of Fluorescence,25,185–197, (2015) https://doi.org/10.1007/S10895-014-1496-7

  86. A. Palanimurugan, A. Kulandaisamy, DNA, invitro antimicrobial/anticancer activities and biocidal based statistical analysis of Schiff base metal complexes derived from salicylalidene-4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one and 2-aminothiazole. Journal of Organometallic Chemistry, 861, 263–274. (2018) https://doi.org/10.1016/j.jorganchem.2018.02.051

  87. A. Palanimurugan, A, Dhanalakshmi, P. Selvapandian, A. Kulandaisamy, Electrochemical behaviour, structural, morphological, Calf Thymus-DNA interaction and in-vitro antimicrobial studies of synthesized Schiff base transition metal complexes. Heliyon,5(7), e02039(2019). https://doi.org/10.1016/j.heliyon.2019.e02039

  88. S. Baluja, S. Chanda, Synthesis, characterization and antibacterial screening of some Schiff bases derived from pyrazole and 4-aminoantipyrine. Rev. Colomb.Cinec.Quim.Farm., 45(2), 201–208. (2016) https://doi.org/10.15446/rcciquifa.v45n2.59936

  89. I. Jirjees, S.A. Ali, H.A. Mahdi, Synthesis, characterisation of Schiff base and complexes derived from 4-aminoantipyrine and using in extraction of Ni(II) ion. International Journal of Scientific and Engineering Research, 6(II),735–743 (2015)

  90. M.O.C. Ogwuegbu, N.C. Oforka, Solvent extraction separation studies of iron (III), cobalt (II), nickel (II) and copper (II) from aqueous solution with 1-phenyl-3-methyl-4-(p-nitrobenzoyl)-5-pyrazolone. Hydrometallurgy, 34, 359–367 (1994) https://doi.org/10.1016/0304-386X(94)90072-8

  91. M.O.C. Ogwuegbu, E. Orji, Liquid-liquid extraction separation of uranium (VI) and nickel (II) by a substituted oxo-pyrazole. Minerals.Engineering 10(11), 1269–1278 (1997). https://doi.org/10.1016/S0892-6875(97)89717-8

    Article  CAS  Google Scholar 

  92. G. Onyedika, J. Arinze and M. Ogwuegbu, Studies on extraction behaviour of cobalt (II) with nitrobenzoylpyrazolone-5. Journal of Mineral and Materials Engineering, 1, 90–94. (2013) https://doi.org/10.4236/jmmce.2013.13017

  93. Z. Alyaninezhad, A. Bekhradnia, N. Feizi, S. Arshadi, M. Zibandeh, A novel aluminium-sensitive fluorescent chemosensor based on 4-aminoantipyrine: An experimental and theoretical study. Spectrochimica Acta. Part A, Molecular and Bimolecular Spectroscopy. 212, 32–41.(2019) https://doi.org/10.1016/j.saa.2018.12.035

  94. S.A. Berger, 2, 2/-pyridil-mono and bis-(2-pyridylhydrazones) as solvent extractants for copper (II), nickel (II) and cobalt (II). Microchem. J. 42(2), 152–160 (1990). https://doi.org/10.1016/0026-265X(90)90040-C

    Article  CAS  Google Scholar 

  95. S.A. Berger, The liquid-liquid extraction of copper (II), nickel (II) and cobalt (II) with 2, 2/-pyridil-mono-(2-quinolyhydrazone), Microchem Journal,47,317- (1993) DOI: https://doi.org/10.1006/mchj.1993.1049

  96. M. Abu-Eid, N.A. Zatar, M.A. Al-Nuri, M. Khamis, S. Khalaf, Spectrophotometric determination of uranium in ores using Di-2-pysridyl Ketone Hydrazone Derivatives. Spectroscopy Letter 25(4), 585–592 (1992). https://doi.org/10.1080/00387019208021533

    Article  CAS  Google Scholar 

  97. M.A. Zatar, A.Z. Abu-Zuhri, M.A. Al-nuri, F.M. Mahmoud, A.A. Abu-Obaid, Simultaneous Spectrophotometric determination of iron (II) and iron (III) mixtures using Di-2-pyridyl Ketone Benzoylhydrazone. Spectroscopy Letter 22(9), 1203–1214 (1989). https://doi.org/10.1080/00387018908054017

    Article  CAS  Google Scholar 

  98. P.K. Radhakrishnan, P. Indrasenan, C.G.R. Nair, Complexes of lanthanide nitrates with 4n-(2/-hydroxybenzylidene)aminoantipyrine. Polyhedron, 3(1), 67–70. (1984) https://doi.org/10.1016/S0277-5387(00)84714-2

  99. P.K. Radhakrishnan, Lanthanide iodide and perchlorate complexes of 4-N-(2/-hydroxy benzylidene)aminoantipyrine. Journal of Indian Chemical Society 61(10), 838–841 (1984)

    CAS  Google Scholar 

  100. M. Joseph, M.K.M. Nair, P.K. Radhakrishnan, Complexes of yttrium and lanthanide bromides with 4-N-(2’-hydroxybenzylidene)aminoantipyrine. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 25(8), 1331–1343 (1995) https://doi.org/10.1080/15533179508014678

  101. B.D. Aghav, S.K. Patil, R.S. Lokhande, Synthesis, characterization and antibacterial properties of the ternary complexes of cerium with Schiff base derived from 4-aminoantipyrine and some amino acids. Adv. Appl. Sci. Res. 6(12), 37–43 (2015)

    CAS  Google Scholar 

  102. B.D. Aghav, R.S. Lokhande, Study of the ternary complexes of lanthanum with 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazolin-5-one and some amino acids. J. Chem. Pharm. Res. 8(6), 380–386 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngozi P. Ebosie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebosie, N.P., Ogwuegbu, M.O.C., Onyedika, G.O. et al. Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: a review. J IRAN CHEM SOC 18, 3145–3175 (2021). https://doi.org/10.1007/s13738-021-02265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02265-1

Keywords

Navigation