Skip to main content
Log in

Conformation-dependent affinity of Cu(II) ions peptide complexes derived from the human Pin1 protein

ITC and DSC study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The human Pin1 WW domain catalyzes the cistrans isomerization of the proline peptide bond. In this study, the conformation and binding of Cu(II) ions by Pin1 were investigated. It has been found that the affinity of peptide fragments of the human Pin1 WW domain for Cu(II) ions depends on its conformation. In particular, we analyzed three peptides derived from human Pin1: the nonapeptide hPin1(14–22) (with sequence Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-NH2, peptide 1) the undecapeptide hPin1(13–23) (with sequence Lys-Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-Tyr-NH2, peptide 2) and its derivative Ala13Ala23hPin1(13–23) (with sequence Ala-Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-Ala-NH2, peptide 3) to study the role of presence in the sequence of the flanked residues at the N- and C-terminus, i.e., Lys13 and Tyr23. The presence of heat-capacity peaks found by DSC measurements for the systems studied strongly suggests that the conformational equilibria of the peptides studied strongly depend on the temperature. NMR spectroscopy and molecular dynamics simulations were instrumental to verify the conformational preferences of three peptides. The absence of likely or oppositely charged groups at the ends of a short chain fragment destroys chain reversal because the charged groups probably screen the nonpolar core from the solvent. ITC experiment was used to study the interactions with Cu(II) ions. It was found that the most stable complexes with Cu2+ ions are formed with peptide 2, which has the most bent conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

hPin1:

Human cell regulatory protein

SPPS:

Solid-phase peptide synthesis

DSC:

Differential scanning calorimetry

C p :

Heat of capacity

T m :

Melting temperature

ITC:

Isothermal titration calorimetry

Mes:

2-(N-morpholino)ethanesulfonic acid

NMR:

Nuclear magnetic resonance

TOCSY:

Two-dimensional nuclear magnetic resonance spectroscopy

ROESY:

Rotating frame nuclear Overhauser effect spectroscopy

DQF-COSY:

Double-quantum filtered correlation spectroscopy

CD:

Circular dichroism

MD:

Molecular dynamic simulation

rmsd:

Root-mean-square deviation

References

  1. Blanco FJ, Rivas G, Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994;1:584–90.

    Article  CAS  Google Scholar 

  2. Searle MS, Williams DH, Packman LC. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995;2:999–1006.

    Article  CAS  Google Scholar 

  3. Skwierawska A, Makowska J, Ołdziej S, Liwo A, Scheraga HA. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure. Proteins Struct Funct Bioinform. 2009;75(4):931–53.

    Article  CAS  Google Scholar 

  4. Lu KP, Hanes SD, Hunter T. A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.

    Article  CAS  Google Scholar 

  5. Lu KP, Liou YC, Zhou XZ. Pinning down the proline-directed phosphorylation signaling. Trends Cell Biol. 2002;12:164–72.

    Article  CAS  Google Scholar 

  6. Lu KP. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell. 2003;4:175–80.

    Article  CAS  Google Scholar 

  7. Lu KP, Liou YC, Vincent I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer’s disease. BioEssays. 2003;25:174–81.

    Article  CAS  Google Scholar 

  8. Liou IC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 2003;424:556–61.

    Article  CAS  Google Scholar 

  9. Lu KP. Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem Sci. 2004;29:200–9.

    Article  CAS  Google Scholar 

  10. Scheinberg H. Wilson’s disease and the physiological chemistry of copper. Inorganic chemistry in biology and medicine. ACS Symp Ser. 1980;140:373–80.

    Article  Google Scholar 

  11. Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876–89.

    Article  CAS  Google Scholar 

  12. Laurie SH, Lund T, Raynor JB. Electronic absorption and electron spin resonance studies on the interaction between the biologically relevant copper(II) glycylglycine and l-histidine complexes with D-penicillamine. J Chem Soc, Dalton Trans. 1975;14:1389–94.

    Article  Google Scholar 

  13. Belosi B, Gaggelli E, Guerrini R, Kozłowski H, Łuczkowski M, Mancini FM, Remelli M, Valensin D, Valensin G. Copper binding to the neurotoxic peptide PrP106-126 thermodynamic and structural studies. Chem Bio Chem. 2004;5:349–59.

    Article  CAS  Google Scholar 

  14. Remelli M, Donatoni M, Guerrini R, Janicka A, Pretegiani P, Kozłowski H. Copper-ion interaction with the 106–113 domain of the prion protein: a solution-equilibria study on model peptides. Dalton Trans. 2005;17:2876–85.

    Article  Google Scholar 

  15. Kozłowski H, Janicka-Kłos A, Stańczak P, Valensin D, Valensin G, Kulon K. Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coord Chem Rev. 2008;252:1069–78.

    Article  Google Scholar 

  16. Gumienna-Kontecka E, Nurchi VM, Szebesczyk A, Bilska P, Krzywoszyńska K, Kozłowski H. Chelating agents as tools for the treatment of metal overload. Z Anorg Allg Chem. 2013;639:1321–31.

    Article  CAS  Google Scholar 

  17. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE. Bush AI dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273:12817–26.

    Article  CAS  Google Scholar 

  18. Choi J-S, Braymer JJ, Nanga RPR, Ramamoorthy A, Lim MH. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc Natl Acad Sci. 2010;107:21990–5.

    Article  CAS  Google Scholar 

  19. Makowska J, Bagińska K, Liwo A, Chmurzyński L, Scheraga HA. Acidic–basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment. Biopolym Pept Sci. 2008;90:724–32.

    Article  CAS  Google Scholar 

  20. Makowska J, Bagińska K, Skwierawska A, Liwo A, Chmurzyński L, Scheraga HA. Influence of charge and size of terminal amino-acid residues on local conformational states and shape of alanine-based peptides. Biopolym Pept Sci. 2008;90:772–82.

    Article  CAS  Google Scholar 

  21. Plotnikov V, Rochalski A, Brandts M, Brandts JF, Williston S, Frasca V, Lin LN. An autosampling differential scanning calorimeter instrument for studying molecular interactions. Assay Drug Dev Technol. 2002;1:83–90.

    Article  CAS  Google Scholar 

  22. Goddard TD, Kneller DG, SPARKY3. San Francisco: University of California; 2001.

  23. Güntert P, Brawn W, Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991;217:517–30.

    Article  Google Scholar 

  24. Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997;273:283–98.

    Article  Google Scholar 

  25. Bystrov VF. Prog Nucl Magn Reson Spectrosc. 1976, 41–81.

  26. Güntert P, Wüthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991;1:447–56.

    Article  Google Scholar 

  27. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 11. San Francisco: University of California; 2010.

    Google Scholar 

  28. Weiner SJ, Kollman PA, Nguyen DT, Case DA. An all atom force field for simulations of proteins and nucleic acid. J Comput Chem. 1986;7:230–52.

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  30. Ewald P. Die Berchnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;64:253–87.

    Article  Google Scholar 

  31. Darden T, York D, Pedersen L. Particle Mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.

    Article  CAS  Google Scholar 

  32. Torda AE, Scheek RM, van Gunsteren WF. Time-dependent distance restraints in molecular-dynamics simulations. Chem Phys Lett. 1989;57:289–94.

    Article  Google Scholar 

  33. Pearlman DA, Kollman PA. Are time-averaged restraints necessary for nuclear-magnetic-resonance refinement a model study for DNA. J Mol Biol. 1991;220:457–79.

    Article  CAS  Google Scholar 

  34. Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14:51–5.

    Article  CAS  Google Scholar 

  35. Shamos MI, Hoey D. Closest-point problems. In: Proceedings of 16th annual IEEE symposium on the foundations of computer science. 1975. AQ6, p. 151–62.

  36. Rohlf FJ. A probabilistic minimum spanning tree algorithm. Inform Process Lett. 1978;7:44–9.

    Article  Google Scholar 

  37. Bentley JL, Friedman JH. Fast algorithms for constructing minimal spanning trees in coordinate spaces. IEEE Trans Comput. C-27. 1978;6:97–105.

    Article  Google Scholar 

  38. Bentley JL, Weide BW, Yao AC. Optimal expected-time algorithms for closest point problems. ACM Trans Math Softw. 1980;6:563–80.

    Article  Google Scholar 

  39. Wyrzykowski D, Zarzeczańska D, Jacewicz D, Chmurzyński L. Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J Therm Anal Calorim. 2011;105:1043–7.

    Article  CAS  Google Scholar 

  40. Wyrzykowski D, Pilarski B, Jacewicz D, Chmurzyński L. Investigation of metal–buffer interactions using isothermal titration calorimetry. J Therm Anal Calorim. 2013;111:1829–36.

    Article  CAS  Google Scholar 

  41. Scholtz JM, Marqusee S, Baldwin RL, York EJ, Stewart JM, Santoro M, Bolen DW. Calorimetric determination of the enthalpy change for the α-helix to coil transition of an alanine peptide in water. PNAS. 1991;88:2854–8.

    Article  CAS  Google Scholar 

  42. La Rosa C, Milardi D, Grasso DJ, Guzzi R, Sportelli L. Thermodynamics of the thermal unfolding of azurin. J Phys Chem. 1995;99:14864–70.

    Article  Google Scholar 

  43. Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.

    Google Scholar 

  44. Wyrzykowski D, Tesmar A, Jacewicz D, Pranczk J, Chmurzyński L. Zinc(II) complexation by some biologically relevant pH buffers. J Mol Recognit. 2014;27:722–6.

    Article  CAS  Google Scholar 

  45. Mash HE, Chin YP. Complexation of copper by zwitter ionic aminosulfonic (Good) buffers. Anal Chem. 2003;75:671–7.

    Article  CAS  Google Scholar 

  46. Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem. 2002;31:231–70.

    CAS  Google Scholar 

  47. Wyrzykowski D, Anusiewicz I, Pilarski B, Jacewicz D, Chmurzyński L. Investigations of coordinating properties of oxydiacetate and thiodiacetate anions towards Zn2+ ions in solutions. Inorg Chem Acta. 2013;405:163–8.

    Article  CAS  Google Scholar 

  48. Makowska J, Żmudzińska W, Uber D, Chmurzyński L. A study of the influence of charged residues on beta-hairpin formation by nuclear magnetic resonance and molecular dynamics. Protein J. 2014;33:525–35.

    Article  CAS  Google Scholar 

  49. Wilson KA, Bouchard JJ, Peng JW. Interdomain interactions support interdomain communication in human Pin1. Biochemistry. 2013;52:6968–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Calculations were carried out using the resources of the Informatics Center of the Metropolitan Academic Network (IC MAN) in Gdansk. Fondazione Ente Cassa di Risparmio di Firenze is greatly acknowledged for supporting Pept Lab of the University of Florence. Moreover, the Erasmus Program 2014 is acknowledged for the traineeship fellowship of DU in Pept Lab at the University of Florence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Makowska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uber, D., Wyrzykowski, D., Tiberi, C. et al. Conformation-dependent affinity of Cu(II) ions peptide complexes derived from the human Pin1 protein. J Therm Anal Calorim 127, 1431–1443 (2017). https://doi.org/10.1007/s10973-016-5387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5387-9

Keywords

Navigation