Skip to main content
Log in

Cross-linking of carboxyl-terminated nitrile rubber with polyhedral oligomeric silsesquioxane

Cure kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Glycidyl polyhedral oligomeric silsesquioxane (POSS) was used as a cross-linking agent to prepare a new organic–inorganic hybrid material from carboxyl-terminated poly(acrylonitrile-co-butadiene) (CTBN). The structure of the reacted material was characterized by Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) at different heating rates in the presence and absence of catalyst, triphenyl phosphine (TPP), was conducted to investigate the curing kinetics. The reaction is catalyzed by the addition of TPP, and rate is maximum at higher catalyst concentrations. Different kinetic models were used to analyze the kinetic parameters. The effect of catalyst on curing process was determined by calculating the activation energy (E a) using Kissinger method. Dependency of E a with extent of conversion was monitored by different isoconversional methods. The curing mechanism of POSS–CTBN system followed autocatalytic model. Moreover, the predicted curves from the kinetic models fit well with the non-isothermal DSC curve. The E a of gelation obtained from rheological studies matched with that from DSC study, in league with the Flory’s theory of cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Markovic E, Constantopolous K, Matisons J. Polyhedral oligomeric silsesquioxanes: from early and strategic development through to materials application. In: Hartmann-Thompson C, editor. Applications of polyhedral oligomeric silsesquioxanes. Advances in silicon science. Netherlands: Springer; 2011. p. 1–46.

    Chapter  Google Scholar 

  2. Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane(POSS)-based polymers. Appl Organomet Chem. 1998;12(10–11):707–13. doi:10.1002/(sici)1099-0739(199810/11)12:10/11<707:aid-aoc776>3.0.co;2-1.

    Article  CAS  Google Scholar 

  3. Laine RM, Roll MF. Polyhedral phenylsilsesquioxanes. Macromolecules. 2011;44(5):1073–109.

    Article  CAS  Google Scholar 

  4. Liu Q, Ren W, Zhang Y, Zhang Y-X. Hydrogenated carboxylated nitrile rubber/modified zinc carbonate basic composites with photoluminescence properties. Eur Polym J. 2011;47(5):1135–41.

    Article  CAS  Google Scholar 

  5. Varghese T, Muthiah R, David J, Kurian A, Athithan S, Krishnamurthy V, et al. Studies on composite extrudable propellant with varied burning rate pressure Index’n’. Defence Sci J. 2013;39(1):1–12.

    Article  Google Scholar 

  6. Wang Y, Wang C, Yin H, Wang L, Xie H, Cheng R. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6(9):719–728.

  7. Kuo S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36(12):1649–96.

    Article  CAS  Google Scholar 

  8. Lee Y-J, Kuo S-W, Huang C-F, Chang F-C. Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). Polymer. 2006;47(12):4378–86.

    Article  CAS  Google Scholar 

  9. Liu Q, Ren W, Zhang Y, Zhang Y. Curing reactions and properties of organic–inorganic composites from hydrogenated carboxylated nitrile rubber and epoxycyclohexyl polyhedral oligomeric silsesquioxanes. Polym Int. 2011;60(3):422–9.

    Article  CAS  Google Scholar 

  10. Liu Q, Ren W, Zhang Y, Zhang Y. A study on the curing kinetics of epoxycyclohexyl polyhedral oligomeric silsesquioxanes and hydrogenated carboxylated nitrile rubber by dynamic differential scanning calorimetry. J Appl Polym Sci. 2012;123(5):3128–36.

    Article  CAS  Google Scholar 

  11. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Amsterdam: Elsevier; 1980.

    Google Scholar 

  12. Murias P, Byczyński Ł, Maciejewski H, Galina H. A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4703-0.

  13. Tripathi M, Kumar D, Rajagopal C, Roy PK. Curing kinetics of self-healing epoxy thermosets. J Therm Anal Calorim. 2015;119(1):547–55.

    Article  CAS  Google Scholar 

  14. Vyazovkin S, Wight C. Kinetics in solids. Annu Rev Phys Chem. 1997;48(1):125–49.

    Article  CAS  Google Scholar 

  15. Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139(1):128–35.

    Article  Google Scholar 

  16. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  17. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7(1):41–6. doi:10.1002/pol.1969.110070109.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  21. Liu YL, Chang GP, Hsu KY, Chang FC. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis (glycidyldimethylsiloxy) octasilsesquioxane and small-molecule curing agents. J Polym Sci, Part A: Polym Chem. 2006;44(12):3825–35.

    Article  CAS  Google Scholar 

  22. Ramírez C, Rico M, Torres A, Barral L, López J, Montero B. Epoxy/POSS organic–inorganic hybrids: ATR-FTIR and DSC studies. Eur Polym J. 2008;44(10):3035–45.

    Article  Google Scholar 

  23. Konnola R, Parameswaranpillai J, Joseph K. Mechanical, thermal, and viscoelastic response of novel in situ CTBN/POSS/epoxy hybrid composite system. Polym Compos. 2015;. doi:10.1002/pc.23390.

    Google Scholar 

  24. Deng Y, Martin GC. Diffusion and diffusion-controlled kinetics during epoxy-amine cure. Macromolecules. 1994;27(18):5147–53.

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  26. Zhang C, Liu X, Cheng J, Zhang J. Study on curing kinetics of diglycidyl 1, 2-cyclohexane dicarboxylate epoxy/episulfide resin system with hexahydro-4-methylphthalic anhydride as a curing agent. J Therm Anal Calorim. 2015;120(3):1893–903.

    Article  CAS  Google Scholar 

  27. Bai Y, Yang P, Zhang S, Li Y, Gu Y. Curing kinetics of phenolphthalein–aniline-based benzoxazine investigated by non-isothermal differential scanning calorimetry. J Therm Anal Calorim. 2015;120(3):1755–64.

    Article  CAS  Google Scholar 

  28. Kasemsiri P, Neramittagapong A, Chindaprasirt P. Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochim Acta. 2015;600:20–7.

    Article  CAS  Google Scholar 

  29. Xiong X, Ren R, Liu S, Lu S, Chen P. The curing kinetics and thermal properties of epoxy resins cured by aromatic diamine with hetero-cyclic side chain structure. Thermochim Acta. 2014;595:22–7.

    Article  CAS  Google Scholar 

  30. Zabihi O, Aghaie M, Zare K. Study on a novel thermoset nanocomposite form DGEBA–cycloaliphatic diamine and metal nanoparticles. J Therm Anal Calorim. 2013;111(1):703–10.

    Article  CAS  Google Scholar 

  31. Fernandez B, Corcuera M, Marieta C, Mondragon I. Rheokinetic variations during curing of a tetrafunctional epoxy resin modified with two thermoplastics. Eur Polym J. 2001;37(9):1863–9.

    Article  CAS  Google Scholar 

  32. Núñez L, Taboada J, Fraga F, Núñez M. Kinetic study and time-temperature-transformation cure diagram for an epoxy-diamine system. J Appl Polym Sci. 1997;66(7):1377–88.

    Article  Google Scholar 

  33. Auad ML, Nutt SR, Stefani PM, Aranguren MI. Rheological study of the curing kinetics of epoxy–phenol novolac resin. J Appl Polym Sci. 2006;102(5):4430–9.

    Article  CAS  Google Scholar 

  34. Zlatanic A, Dunjic B. Rheological study of the copolymerization reaction of acrylate-terminated unsaturated copolyesters with styrene. Macromol Chem Phys. 1999;200(9):2048–58.

    Article  CAS  Google Scholar 

  35. Santhosh Kumar K, Nair CR, Ninan K. Rheokinetic investigations on the thermal polymerization of benzoxazine monomer. Thermochim Acta. 2006;441(2):150–5.

    Article  CAS  Google Scholar 

  36. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

    Google Scholar 

Download references

Acknowledgements

One of the authors (Raneesh Konnola) thanks IIST for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuruvilla Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konnola, R., Nair, C.P.R. & Joseph, K. Cross-linking of carboxyl-terminated nitrile rubber with polyhedral oligomeric silsesquioxane. J Therm Anal Calorim 123, 1479–1489 (2016). https://doi.org/10.1007/s10973-015-5019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5019-9

Keywords

Navigation